Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T18:07:07.307Z Has data issue: false hasContentIssue false

Thermal conversion of gels to YBa2Cu3Ox, Bi2Sr2CaCu2Ox, and (Bi, Pb)2Sr2Ca2Cu3Ox and their decarbonization by low-temperature treatment with nitric acid

Published online by Cambridge University Press:  31 January 2011

A. Deptula
Affiliation:
Institute of Nuclear Chemistry and Technology, 03–195 Warsaw, Poland
T. Olczak
Affiliation:
Institute of Nuclear Chemistry and Technology, 03–195 Warsaw, Poland
W. Lada
Affiliation:
Institute of Nuclear Chemistry and Technology, 03–195 Warsaw, Poland
K. C. Goretta
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois, 60439-4838
A. Di Bartolomeo
Affiliation:
C.R.E. Casaccia, ENEA, Rome, Italy
A. Brignocchi
Affiliation:
C.R.E. Casaccia, ENEA, Rome, Italy
Get access

Abstract

Thermal conversion of acetate-derived gels to YBa2Cu3Ox (Y–123), Bi2Sr2CaCu2Ox (Bi–2212), and (Bi, Pb)2Sr2Ca2Cu3Ox (Bi-2223) has been studied by thermal analysis, x-ray diffraction, and infrared spectroscopy. Carbonates formed above 200 °C during thermal treatment of all gels. Decomposition of the carbonates proved to be more difficult for Y-123 than for Bi-2212 or Bi-2223. However, all of the gels that were heated contained significant amounts of carbon after calcination. Complete decarbonization of materials was attained by treating the intermediate phases (e.g., those formed after calcination at 600 °C) with nitric acid and then subjecting them to a final thermal treatment. Removal of carbonates from the intermediate phases strongly accelerated formation of the superconducting compounds.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.McIntyre, P. C., Cima, M. J., Ng, M. F., Chiu, R. C., and Rhine, W. E., J. Mater. Res. 5, 2271 (1990).CrossRefGoogle Scholar
2.Song, K-H., Liu, H. C., Dou, S-X., and Sorrel, C. C., J. Am. Ceram. Soc. 73, 1771 (1990).CrossRefGoogle Scholar
3.Clarke, D. R., Shaw, T. M., and Dimos, D., J. Am. Ceram. Soc. 72, 1103 (1989).CrossRefGoogle Scholar
4.Bowmer, T. N. and Shokoohi, F. K.,J. Mater. Res. 6, 670 (1991).CrossRefGoogle Scholar
5.Strom, L., Carnall, E., Ferranti, S., and Mir, J., J. Mater. Sci. 26, 1557 (1991).CrossRefGoogle Scholar
6.Selvaduray, G., Zhang, C. J., Balachandran, U., Gao, Y., Merkle, K. L., Shi, H., and Poeppel, R. B., J. Mater. Res. 7, 283 (1992).CrossRefGoogle Scholar
7.Rao, C. N. R., Nagarajan, N., and Vijayaraghavan, R., Supercond. Sci. Technol. 6, 1 (1993).CrossRefGoogle Scholar
8.Wu, C-T., Goretta, K. C., and Poeppel, R. B., Appl. Supercond. 1, 33 (1993).CrossRefGoogle Scholar
9.Balachandran, U., Poeppel, R. B., Emerson, J. E., Johnson, S. A., Lanagan, M. T., Youngdahl, C. A., Shi, D., Goretta, K. C., and Eror, N. G., Mater. Lett. 8, 454 (1989).CrossRefGoogle Scholar
10.Dorris, S. E., Dusek, J. T., Lanagan, M. T., Picciolo, J.J., Singh, J.P., Creech, J. E., and Poeppel, R. B., Ceram.Bull. 70, 722 (1991).Google Scholar
11.Deptula, A., Lada, W., Olczak, T., Lanagan, M. T., Dorris, S. E., Goretta, K. C., and Poeppel, R. B., Polish patent pending, No. P 300 557 (October 1993).Google Scholar
12. Argonne National Laboratory Report ANL-IN-93–062 (July 1993).Google Scholar
13.Deptula, A., Lada, W., Olczak, T., Zoltowski, T., and Di Bartolomeo, A., in Ceramics Today–Tomorrow's Ceramics, edited by Vincenzini, P. (Elsevier Science Publisher B. V., Amsterdam, 1991), p. 625.Google Scholar
14.Deptula, A., Lada, W., Olczak, T., Zotowski, T., and Di Bartolomeo, A., in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R., (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 907.Google Scholar
15.Deptula, A., Lada, W., Olczak, T., and Di Bartolomeo, A., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M. J., Klemperer, W. G., and Brinker, C. J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 177.Google Scholar
16.Smith, A. L., Applied Infrared Spectroscopy, Fundamentals, Techniques and Analytical Problem-Solving (John Wiley and Sons, New York, 1979), p. 251.Google Scholar
17.Deptula, A., Olczak, T., and Lada, W., Polish patent pending, No. P 295 195 (June 1992).Google Scholar
18.Gao, Y., Merkle, K. L., Zhang, C., Balachandran, U., and Poeppel, R. B., J. Mater. Res. 5, 1363 (1990).CrossRefGoogle Scholar
19.Ma, K. and Pierre, A. C., J. Mater. Res. 7, 1328 (1992).CrossRefGoogle Scholar
20.Shei, C. Y., Liu, R. S., Chang, C. T., and Wu, P. T., Mater. Lett. 9, 105 (1990).CrossRefGoogle Scholar
21.Chen, F. H., Koo, H. S., and Tseng, T. Y., J. Mater. Sci. 25, 3338 (1990).CrossRefGoogle Scholar
22.Tanaka, K., Nozue, A., and Kamiya, A., J. Mater. Sci. 25, 3551 (1990).CrossRefGoogle Scholar
23.Masuda, Y., Ogawa, R., Kawate, Y., Tateishi, T., and Hara, N., J. Mater. Res. 7, 292 (1992).CrossRefGoogle Scholar
24.Morgan, P. E. D., Housley, R. M., Porter, J. R., and Ratto, J. J., Physica C 176, 279 (1991).CrossRefGoogle Scholar
25.Dorris, S. E., Prorok, B. C., Lanagan, M. T., Sinha, S., and Poeppel, R. B., Physica C 212, 66 (1993).CrossRefGoogle Scholar
26.Dorris, S. E., Prorok, B. C., Lanagan, M. T., Browning, N. B., Hagen, M. R., Parrell, J. A., Feng, Y., Umezawa, A., and Larbalestier, D. C., Physica C 223, 163 (1994).CrossRefGoogle Scholar
27.Fukushima, K., Jpn. J. Appl. Phys. 29, L2195 (1990).CrossRefGoogle Scholar
28.Koyama, S., Endo, U., and Kawai, T., Jpn. J. Appl. Phys. 27, L1861 (1988).CrossRefGoogle Scholar
29.Dubovitskii, A. V., Marakov, E.F., Makova, M. K., Merzhanov, V.A., and Topnikov, V. N., Supercond. 4, 935 (1991).Google Scholar
30.Jang, H. M., Moon, J. H., and Shin, H. J., J. Mater. Res. 6, 916 (1991).CrossRefGoogle Scholar
31.Mani, T. V., Damodaran, A. D., and Warrier, K. G. K., J. Mater. Sci. 29, 6453 (1994).CrossRefGoogle Scholar