Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T16:44:09.207Z Has data issue: false hasContentIssue false

Thermal characterization of vertical silicon nanowires

Published online by Cambridge University Press:  23 June 2011

Andrej Stranz
Affiliation:
Institute of Semiconductor Technology, TU Braunschweig, University of Technology, 38106 Braunschweig, Germany
Andreas Waag
Affiliation:
Institute of Semiconductor Technology, TU Braunschweig, University of Technology, 38106 Braunschweig, Germany
Erwin Peiner*
Affiliation:
Institute of Semiconductor Technology, TU Braunschweig, University of Technology, 38106 Braunschweig, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Arrays of vertically aligned silicon wires of 250 nm–4 μm in diameter were fabricated in a top–down process using photolithography and deep reactive ion etching at cryogenic temperatures. Using the 3-omega method, thermal conductance of vertical silicon nanowires, i.e., nanopillars, was measured immediately on-chip without the need of breaking off single wires and mounting them into a special testing device. The Seebeck coefficient was measured with 2-mm2 arrays of pillars of 260 nm in diameter, which were pressure-joined with bulk chips for testing. Testing was performed in the temperature range between 50 and 470 °C at applied temperature gradients of up to 190 °C. We found a reduction of the thermal conductivity to less than 30% of the bulk silicon, confirming that arrayed vertical nanowires fabricated in an economical top–down process can strongly promote silicon as a thermoelectric material.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yang, P., Yan, R., and Fardy, M.: Semiconductor nanowire: What’s next? Nano Lett. 10, 1529 (2010).CrossRefGoogle ScholarPubMed
2.Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard, W.A. III, and Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168(2008).CrossRefGoogle ScholarPubMed
3.Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., and Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163(2008).CrossRefGoogle ScholarPubMed
4.Martin, P., Aksamija, Z., Pop, E., and Ravaioli, U.: Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys. Rev. Lett. 102, 125503 (2009).CrossRefGoogle ScholarPubMed
5.Hsu, C.T., Yao, D.J., Ye, K.J., and Yu, B.: Renewable energy of waste heat recovery system for automobiles. J. Renewable Sustainable Energy 2, 013105 (2010).CrossRefGoogle Scholar
6.Espinosa, N., Lazard, M., Aixala, L., and Scherrer, H.: Modeling a thermoelectric generator applied to diesel automotive heat recovery. J. Electron. Mater. 39, 1446 (2010).CrossRefGoogle Scholar
7.Park, S.Y., Di Giacomo, S.J., Anisha, R., Berger, P.R., Thompson, P.E., and Adesida, I.: Fabrication of nanowires with high aspect ratios utilized by dry etching with SF6:C4F8 and self-limiting thermal oxidation on Si substrate. J. Vac. Sci. Technol. B 28, 763(2010).CrossRefGoogle Scholar
8.Paul, D.: Generate Renewable Energy Efficiently using Nanofabricated Silicon (GREEN Silicon). European project EC FP7 ICT FET, http://www.greensilicon.eu/GREENSilicon/index.html.Google Scholar
9.Sökmen, Ü., Stranz, A., Fündling, S., Merzsch, S., Neumann, R., Wehmann, H.-H., Peiner, E., and Waag, A.: Shallow and deep dry etching of silicon using ICP cryogenic reactive ion etching process. Microsyst. Technol. 16, 863 (2010).CrossRefGoogle Scholar
10.Stranz, A., Sökmen, Ü., Peiner, E., and Waag, A.: Sapphire on silicon assembly using a nanostructured compliant interface. (Techn. Dig. 22nd Intern. Conf. Eurosensors XXII, Dresden, Germany, September 7–10, 2008), p. 1246.Google Scholar
11.Shi, L., Li, D., Yu, C., Jang, W., Kim, D., Yao, Z., Kim, P., and Majumdar, A.: Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 125, 881 (2003).CrossRefGoogle Scholar
12.Bourgeois, O., Fournier, T., and Chaussy, J.: Measurement of the thermal conductance of silicon nanowires at low temperature. J. Appl. Phys. 101, 016104 (2007).CrossRefGoogle Scholar
13.Hu, X.J., Antonio Padillay, A., Xuz, J, Fisher, T.S, Goodson, K.E.: 3-omega measurements of vertically oriented carbon nanotubes on silicon. J. Heat Transfer 128, 1109 (2006).CrossRefGoogle Scholar
14.Puyoo, E., Grauby, S., RampnouxJ,-M. J,-M., Rouvière, E., and Dilhaire, S.: Thermal exchange radius measurement: Application to nanowire thermal imaging. Rev. Sci. Instrum. 81, 073701 (2010).CrossRefGoogle ScholarPubMed
15.Lefèvre, S., Volz, S., and Chapuis, P.-O.: Nanoscale heat transfer at contact betweena hot tip and a substrate. Int. J. Heat Mass Transfer 49, 251 (2006).CrossRefGoogle Scholar
16.Cahill, G.D.: Thermal conductivity measurement from 30 to 750 K: The 3ω method. Rev. Sci. Instrum. 61, 802 (1990); Erratum. Rev. Sci. Instrum. 73, 3701 (2002).CrossRefGoogle Scholar
17.Sungtaek Ju, Y.: Phonon heat transport in silicon nanostructures. Appl. Phys. Lett. 87, 153106 (2005).Google Scholar
18.Geballe, T.H. and Hull, T.W.: Seebeck effect in silicon. Phys. Rev. 98, 940 (1955).CrossRefGoogle Scholar
19.Neophytou, N., Wagner, M., Kosina, H., and Selberherr, S.: Analysis of thermoelectric properties of scaled silicon nanowires using an atomistic tight-binding model. J. Electron. Mater. 39, 1902 (2010).CrossRefGoogle Scholar
20.Cahill, G.D., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., and Phillpot, S.R.: Nanoscale thermal transport. J. Appl. Phys. 93, 793 (2003).CrossRefGoogle Scholar
21.Pruessner, W.M., Rabinovich, W.S., Stievater, T.H., Park, D., and Baldwin, J.W.: Cryogenic etch process development for profile control of high aspect-ratio submicron silicon trenches. J. Vac. Sci. Technol. B 25, 21 (2007).CrossRefGoogle Scholar