Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T09:29:22.431Z Has data issue: false hasContentIssue false

Thermal annealing influence on structural, magnetic, electronic, and mechanical properties of off-stoichiometric Ni40Cu10Mn35Ti15 all-d-metal Heusler alloy

Published online by Cambridge University Press:  20 August 2020

Vinicius G. de Paula
Affiliation:
Universidade Federal do ABC, Santo André, SP09210-580, Brazil
Leonardo S. de Oliveira
Affiliation:
Universidade Federal do ABC, Santo André, SP09210-580, Brazil
Anibal A. Mendes Filho
Affiliation:
Universidade Federal do ABC, Santo André, SP09210-580, Brazil
Carlos T. Rios
Affiliation:
Universidade Federal do ABC, Santo André, SP09210-580, Brazil
Jose A. Souza*
Affiliation:
Universidade Federal do ABC, Santo André, SP09210-580, Brazil
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We have synthesized off-stoichiometric Ni40Cu10Mn35Ti15 all-d-metal Heusler alloy with a B2 cubic crystal structure by an arc melting process and investigated its structural, magnetic, electronic, thermal, and mechanical properties under the influence of a single-step thermal annealing. The compound exhibits an antiferromagnetic ordering accompanied by thermal hysteresis indicating a first-order magneto-structural transition. Curie–Weiss molecular field analysis reveals the presence of ferromagnetic interactions competing with long-range antiferromagnetic ordering. Thermal annealing leads to the appearance of a heat capacity sharp peak around antiferromagnetic transition. Electrical resistivity measurements display abrupt changes close to the magneto-structural transition revealing the strong coupling among spin, lattice, and charge degrees of freedom characteristic of a martensitic transition (MT). We have also evaluated its mechanical properties from microhardness measurements, and the results indicate that this alloy exhibits ductile behavior. The occurrence of MT associated with improved ductility is an essential combination for technological application as shape-memory alloys.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kainuma, R., Imano, Y., Ito, W., Sutou, Y., Morito, H., Okamoto, S., Kitakami, O., Oikawa, K., Fujita, A., Kanomata, T., and Ishida, K.: Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957 (2006).CrossRefGoogle ScholarPubMed
Gutfleisch, O., Willard, M.A., Bruck, E., Chen, C.H., Sankar, S.G., and Liu, J.P.: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 23, 821 (2011).CrossRefGoogle ScholarPubMed
Pal, D., Ghosh, A., and Mandal, K.: Large inverse magnetocaloric effect and magnetoresistance in nickel rich Ni52Mn34Sn14 Heusler alloy. J. Magn. Magn. Mater. 360, 183 (2014).CrossRefGoogle Scholar
Hassan, N., Chen, F., Zhang, M., Shah, I.A., Liu, J., Gong, Y., Xu, G., and Xu, F.: Realization of magnetostructural coupling and a large magnetocaloric effect in the MnCoGe1+x system. J. Magn. Magn. Mater. 439, 120 (2017).CrossRefGoogle Scholar
Liu, J., Gottschall, T., Skokov, K.P., Moore, J.D., and Gutfleisch, O.: Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620 (2012).CrossRefGoogle ScholarPubMed
Liu, Z.H., Ma, X.Q., Zhu, Z.Y., Luo, H.Z., Liu, G.D., Chen, J.L., Wu, G.H., Zhang, X., and Xiao, J.Q.: Magnetoresistance in ferromagnetic shape memory alloy NiMnFeGa. J. Magn. Magn. Mater. 323, 2192 (2011).CrossRefGoogle Scholar
Srivastava, V., Song, Y., Bhatti, K., and James, R.D.: The direct conversion of heat to electricity using multiferroic alloys. Adv. Energy Mater. 1, 97 (2011).CrossRefGoogle Scholar
Felser, C. and Hirohata, A.: Heusler Alloys: Properties, Growth, Applications (Springer-Verlag, Berlin, Germany, 2016).CrossRefGoogle Scholar
Li, G.J., Liu, E.K., Zhang, H.G., Zhang, Y.J., Xu, G.Z., Luo, H.Z., Zhang, H.W., Wang, W.H., and Wu, G.H.: Role of covalent hybridization in the martensitic structure and magnetic properties of shape-memory alloys: The case of Ni50Mn5+xGa35-xCu10. Appl. Phys. Lett. 102, 062407 (2013).CrossRefGoogle Scholar
Tan, J.G., Liu, Z.H., Zhang, Y.J., Li, G.T., Zhang, H.G., Liu, G.D., and Ma, X.Q.: Site preference and tetragonal distortion of Heusler alloy Mn-Ni-V. Results Phys. 12, 1182 (2019).CrossRefGoogle Scholar
Meng, F., Hao, H., Ma, Y., Guo, X., and Luo, H.: Site preference of Zr in Heusler alloys Zr2YAl (Y = Cr, Mn, Fe, Co, Ni) and its influence on the electronic properties. J. Alloys Compd. 695, 2995 (2017).CrossRefGoogle Scholar
Han, Y., Wu, M., Feng, Y., Cheng, Z., Lin, T., Yang, T., Khenatae, R., and Wanga, X.: Competition between cubic and tetragonal phases in all-d-metal Heusler alloys, X2-xMn1+xV (X=Pd, Ni, Pt, Ag, Au, Ir, Co; x=1, 0): a new potential direction of the Heusler family. IUCr J. Mater. Comput. 6, 465 (2019).Google ScholarPubMed
Shena, J., Zeng, Q., Zhang, H., Xia, X., Liu, E., Wanga, W., and Wu, G.: Atomic configuration, unusual lattice constant change, and tunable ferromagnetism in all-d-metal Heusler alloys Fe2CrV-FeCr2V. J. Magn. Magn. Mater. 492, 165661 (2019).CrossRefGoogle Scholar
Wei, Z.Y., Liu, E.K., Chen, J.H., Li, Y., Liu, G.D., Luo, H.Z., Xi, X.K., Zhang, H.W., Wang, W.H., and Wu, G.H.: Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases. Appl. Phys. Lett. 107, 022406 (2015).CrossRefGoogle Scholar
Aznar, A., Gràcia-Condal, A., Planes, A., Lloveras, P., Barrio, M., Tamarit, J-L., Xiong, W., Cong, D., Popescu, C., and Mañosa, L.: Giant barocaloric effect in all-d-metal Heusler shape memory alloys. Phys. Rev. Mater. 3, 044406 (2019).CrossRefGoogle Scholar
Cong, D., Xiong, W., Planes, A., Ren, Y., Mañosa, L., Cao, P., Nie, Z., Sun, X., Yang, Z., Hong, X., and Wang, Y.: Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys. Phys. Rev. Lett. 122, 255703 (2019).Google ScholarPubMed
ul Hassan, N., Shah, I.A., Jelani, M., Naeem, M., Riaz, S., Naseem, S., Xu, F., and Ullah, Z.: Effect of Ni-Mn ratio on structural, martensitic and magnetic properties of Ni-Mn-Co-Ti ferromagnetic shape memory alloys. Mater. Res. Express 5, 086102 (2018).CrossRefGoogle Scholar
Zeng, Q., Shen, J., Zhang, H., Chen, J., Ding, B., Xi, X., Liu, E., Wang, W., and Wu, G.: Electronic behavior during martensitic transformations in all-d-metal Heusler alloys. J. Phys. Condens. Matter 31, 425401 (2019).CrossRefGoogle Scholar
Li, G.J., Liu, E.K., Zhang, H.G., Qian, J.F., Zhang, H.W., Chen, J.L., Wang, W.H., and Wu, G.H.: Unusual lattice constant changes and tunable magnetic moment compensation in Mn50−xCo25Ga25+x alloys. Appl. Phys. Lett. 101, 102402 (2012).CrossRefGoogle Scholar
Ma, L., Wang, W.H., Zhen, C.M., Hou, D.L., Tang, X.D., Liu, E.K., and Wu, G.H.: Polymorphic magnetization and local ferromagnetic structure in Co-doped Mn2NiGa alloys. Phys. Rev. B 84, 224404 (2011).CrossRefGoogle Scholar
Graf, T., Felser, C., and Parkin, S.S.S.: Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1 (2011).CrossRefGoogle Scholar
Roy, T. and Chakrabarti, A.: Ab initio study of effect of Co substitution on the magnetic properties of Ni and Pt-based Heusler alloys. Phys. Lett. A 381, 1449 (2017).CrossRefGoogle Scholar
Şaşıoğlu, E., Sandratskii, L.M., and Bruno, P.: Role of conduction electrons in mediating exchange interactions in Mn-based Heusler alloys. Phys. Rev. B 77, 064417 (2008).CrossRefGoogle Scholar
Dubenko, I., Samanta, T., Pathak, A.K., Kazakov, A., Prudnikov, V., Stadler, S., Granovsky, A., Zhukov, A., and Ali, N.: Magnetocaloric effect and multifunctional properties of Ni–Mn-based Heusler alloys. J. Magn. Magn. Mater. 324, 3530 (2012).CrossRefGoogle Scholar
Karel, J., Bernardi, F., Wang, C., Stinshoff, R., Born, N-O., Ouardi, S., Burkhardt, U., Fecher, G.H., and Felser, C.: Evidence for localized moment picture in Mn-based Heusler compounds. Phys. Chem. Chem. Phys. 17, 31707 (2015).CrossRefGoogle ScholarPubMed
Lázpita, P., Barandiarán, J.M., Gutiérrez, J., Feuchtwanger, J., Chernenko, V.A., and Richard, M.L.: Magnetic moment and chemical order in off-stoichiometric Ni–Mn–Ga ferromagnetic shape memory alloys. New J. Phys. 13, 033039 (2011).CrossRefGoogle Scholar
Webster, P.J., Ziebeck, K.R.A., Town, S.L., and Peak, M.S.: Magnetic order and phase transformation in Ni2MnGa. Phil. Mag. B 49, 295 (1984).CrossRefGoogle Scholar
D’ Souza, S.W., Chakrabarti, A., and Barman, S.R.: Magnetic interactions and electronic structure of Ni–Mn–In. J. Electron Spectrosc. 208, 33 (2016).CrossRefGoogle Scholar
Imada, S., Yamasaki, A., Kanomata, T., Muro, T., Sekiyama, A., and Suga, S.: Composition dependence of Ni magnetic moment in Ni–Mn-based Heusler-type intermetallic compounds. J. Magn. Magn. Mater. 310, 1857 (2007).CrossRefGoogle Scholar
Zou, J.D., Liu, J., and Yan, M.: Crystal structure and magnetic properties of GdSi1.78, Gd(Si0.684Ge0.316)1.78, GdGe1.57, and GdSn2 compounds. J. Magn. Magn. Mater. 385, 77 (2015).Google Scholar
Gosh, K., Mazundar, C., Ranganathan, R., and Mukherjee, S.: Griffiths phase behaviour in a frustrated antiferromagnetic intermetallic compound. Sci. Rep. 5, 15801 (2015).CrossRefGoogle Scholar
Magen, C., Algarabel, P.A., Morellon, L., Araújo, J.P., Ritter, C., Ibarra, M.R., Pereira, A.M., and Sousa, J.B.: Observation of a Griffiths-like phase in the magnetocaloric compound, Tb5Si2Ge2. Phys. Rev. Lett. 167201, 96 (2006).Google Scholar
Malaman, B. and Venturini, G.: Magnetic structures of LFexSn2 (L = Tb–Tm; 0.1<x<0.15). J. Alloys Compd. 494, 44 (2010).CrossRefGoogle Scholar
Ben Amor, N., Bejar, M., Dhahri, E., Valente, M.A., Lachkar, P., and Hlil, E.K.: Magnetic and specific heat studies of the frustrated Er2Mn2O7 compound. J. Rare Earth 31, 54 (2013).CrossRefGoogle Scholar
Ghosh, K., Mazumdar, C., Ranganathan, R., Mukherjee, S., and De Raychaudhury, M.: Structural correlation with the Griffiths phase in disordered magnetic systems. Phys. Rev. B 98, 184419 (2018).CrossRefGoogle Scholar
Chen, J-H., Bruno, N.M., Karaman, I., Huang, Y., Li, J., and Ross, J.H. Jr.: Calorimetric and magnetic study for Ni50Mn36In14 and relative cooling power in paramagnetic inverse magnetocaloric systems. J. Appl. Phys. 116, 203901 (2014).CrossRefGoogle Scholar
Sharma, J., Coelho, A.A., Repaka, D.V.M., Ramanujan, R.V., and Suresh, K.G.: Pressure induced martensitic transition, magnetocaloric and magneto-transport properties in Mn-Ni-Sn Heusler alloy. J. Magn. Magn. Mater. 487, 16530 (2019).CrossRefGoogle Scholar
Konoplyuk, S., Kokorin, V., Mashirov, A., Dilmieva, E., and Dalinger, A.. Giant reversible stress-induced change of resistivity in Ni-Mn-In-Co alloys. J. Appl. Phys. 125, 195103 (2019).CrossRefGoogle Scholar
Koyama, K., Okada, H., and Watanabe, K.: Observation of large magnetoresistance of magnetic Heusler alloy Ni50Mn36Sn14 in high magnetic fields. Appl. Phys. Lett. 89, 182510 (2006).CrossRefGoogle Scholar
Khan, R.A.A., Ghomashchi, R., Xie, Z., and Chen, L.: Ferromagnetic shape memory Heusler materials: Synthesis, microstructure characterization and magnetostructural properties. Materials 11, 988 (2018).CrossRefGoogle Scholar
Liu, K., Ma, S., Ma, C., Han, X., Yu, K., Yang, S., Zhang, Z., Song, Y., Luo, X., Chen, C., Ur Rehman, S., and Zhong, Z.: Martensitic transformation and giant magneto-functional properties in all-d-metal Ni-Co-Mn-Ti alloy ribbons. J. Alloys Compd. 790, 78 (2019).CrossRefGoogle Scholar
Yan, H-L., Wang, L-D., Liu, H-X., Huang, X-M., Jia, N., Li, Z-B., Yang, B., Zhang, Y-D., Esling, C., Zhao, X., and Zuo, L.: Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni–Mn–Ti alloy: Experimental and ab-initio studies. Mater. Des. 184, 108180 (2019).CrossRefGoogle Scholar
Yang, S.M., Kong, Y., Du, Y., Shen, L.M., and Shen, Y.G.: First-principles prediction of structural, mechanical and magnetic properties in Ni2MnAl. Comput. Mater. Sci. 123, 52 (2016).CrossRefGoogle Scholar
Rogl, G., Grytsiv, A., Gürth, M., Tavassoli, A., Ebner, C., Wünschek, A., Puchegger, S., Soprunyuk, V., Schranz, W., Bauer, E., Müller, H., Zehetbauer, M., and Rogl, P.: Mechanical properties of half-Heusler alloys. Acta Mater. 107, 178 (2016).CrossRefGoogle Scholar
Ozdemir Kart, S. and Cagin, T.: Elastic properties of Ni2MnGa from first-principles calculations. J. Alloys Compd. 508, 177 (2010).CrossRefGoogle Scholar
Pugh, S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. J. Sci. 45, 823 (1954).CrossRefGoogle Scholar
Cardelli, F.: Materials Handbook: A Concise Desktop Reference, 2nd ed. (Springer-Verlag, London, England, 2008).Google Scholar
Larson, A.C. and Von Dreele, R.B.: General Structure Analysis System (GSAS). Los Alamos National Laboratory Report No. LAUR 86-748, 2004.Google Scholar