Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T13:24:12.319Z Has data issue: false hasContentIssue false

Textures of thin copper films

Published online by Cambridge University Press:  31 January 2011

W-M. Kuschke
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Metallkunde der Universität Stuttgart, Seestr. 71, 70174 Stuttgart, Germany
A. Kretschmann
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Metallkunde der Universität Stuttgart, Seestr. 71, 70174 Stuttgart, Germany
R-M. Keller
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Metallkunde der Universität Stuttgart, Seestr. 71, 70174 Stuttgart, Germany
R. P. Vinci
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305-2205
C. Kaufmann
Affiliation:
TU Chemnitz-Zwickau, Fakultät für Elektrotechnik und Informationstechnik, Zentrum für Mikrotechnologien, Reichenhainer Str. 70, 09126 Chemnitz, Germany
E. Arzt
Affiliation:
Max-Planck-Institut für Metallforschung and Institut für Metallkunde der Universität Stuttgart, Seestr. 71, 70174 Stuttgart, Germany
Get access

Abstract

The textures of thin copper films were determined quantitatively by measuring (111) pole figures with x-ray diffraction. Measurements were performed on a variety of samples, differing in copper film thickness and deposition technique, diffusion barrier material, and the presence or absence of a cap layer. Texture changes due to an annealing treatment were also recorded and correlated with stress measurements by the wafer-curvature technique. It is found that the deposition method (PVD vs CVD) has a strong effect on texture, barrier layer effects range from negligible to significant depending on the barrier material, and the effect of a cap layer is insignificant.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.MRS Bull. XVIII, 1 (1993).Google Scholar
2.MRS Bull. XIX, 1 (1994).Google Scholar
3.Park, C. W. and Vook, R. W., Appl. Surf. Sci 70/71, 639 (1993).CrossRefGoogle Scholar
4.Knorr, D. B., Tracy, D. P., and Lu, T-M., Textures and Microstructures 14–18, 543 (1991).Google Scholar
5.Knorr, D. B., in Materials Reliability in Microelectronics III, edited by Rodbell, K. P., Filter, W. F., Frost, H. J., and Ho, P. S. (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993), p. 75.Google Scholar
6.Campbell, A. N., Mikawa, R. E., and Knorr, D. B., J. Electron. Mater. 22, 589 (1993).Google Scholar
7.Vaidya, S. and Sinha, A. K., Thin Solid Films 75, 253 (1981).Google Scholar
8.Vinci, R. P., Zielinski, E. M., and Bravman, J. C., Thin Solid Films 262, 142 (1995).CrossRefGoogle Scholar
9.Tracy, D. P. and Knorr, D. B., J. Electron. Mater. 22, 611 (1993).Google Scholar
10.Schulz, L. G., J. Appl. Phys. 20, 1030 (1949).Google Scholar
11.Chernock, W. P. and Beck, P. A., J. Appl. Phys. 20, 1030 (1952).Google Scholar
12. ASTM Standard E81–63, Standard Method for Preparing Quantitative Pole Figures of Metals (American Society for Testing and Materials, Philadelphia, 1974).Google Scholar
13.Edelman, F., Brener, R., Eizenberg, M., Sader, E., and Dafine, Y., Thin Solid Films 228, 242 (1993).Google Scholar
14.Rodbell, K. P., Knorr, D. B., and Tracy, D. P., in Materials Reliability in Microelectronics II, edited by Thompson, C. V. and Lloyd, J. R. (Mater. Res. Soc. Symp. Proc. 265, Pittsburgh, PA, 1992), p. 107.Google Scholar
15.Licata, T. J., Sullivan, T. D., Bass, R. S., Ryan, J. G., and Knorr, D. B., in Materials Reliability in Microelectronics III, edited by Rodbell, K. P., Filter, W. F., Frost, H. J., and Ho, P. S. (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993), p. 87.Google Scholar
16.Rodbell, K. P., Knorr, D. B., and Mis, J. D., J. Electron Mater. 22, 597 (1993).Google Scholar
17.Vinci, R. P. and Bravman, J. C., in Materials Reliability in Microelectronics III, edited by Rodbell, K. P., Filter, W. F., Frost, H. J., and Ho, P. S. (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993), p. 269.Google Scholar
18.Zielinski, E. M., Vinci, R. P., and Bravman, J. C., J. Electron. Mater. 24, 1485 (1995).Google Scholar
19.Keller, R-M., Bader, S., Vinci, R. P., and Arzt, E., in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S. P., Børgesen, P., Townsend, P. H., Ross, C. A., and Volkert, C. A. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 453.Google Scholar
20.Keller, R-M., Kuschke, W-M., Kretschmann, A., Bader, S., Vinci, R. P., and Arzt, E., in Materials Reliability in Microelectronics V, edited by Oates, A. S., Gadepally, K., Rosenberg, R., Filter, W. F., and Greer, A. L. (Mater. Res. Soc. Symp. Proc. 391, Pittsburgh, PA, 1995).Google Scholar
21.Keller, R-M., Sigle, W., Vinci, R. P., and Arzt, E., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W. W., Gao, H., Sundgren, J-E., and Baker, S. P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1996).Google Scholar