Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-08T04:44:49.915Z Has data issue: false hasContentIssue false

Tetragonal-orthorhombic phase transition in YBaCuO thin films observed by perturbed angular correlation spectroscopy

Published online by Cambridge University Press:  31 January 2011

R. Platzer
Affiliation:
Department of Physics and Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331–6507
I. D. Dumkow
Affiliation:
Department of Physics and Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331–6507
D. W. Tom
Affiliation:
Department of Physics and Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331–6507
J. A. Gardner
Affiliation:
Department of Physics and Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331–6507
J. Tate
Affiliation:
Department of Physics and Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331–6507
Get access

Abstract

Oxygen-deficient, tetragonal thin films of YBa2Cu3O6+x with x ≈ 0.25, quenched from the deposition temperature, change to the oxygenated, orthorhombic phase with x ≈ 1, between 200 °C and 400 °C in flowing oxygen. The transition is not reversible in flowing oxygen, and cannot be completely reversed by cooling in flowing argon. We do not observe a transition of the orthorhombic films to the tetragonal phase up to 800 °C in flowing oxygen. We observe that the major impurity phases to appear under nonoptimal annealing conditions are oriented phases of YcuO2 and BaCu2O2, with Y2BaCu2O5 and Y2Cu2O5 conspicuously absent. These conclusions have been drawn from a study that uses perturbed angular correlation spectroscopy to probe the local microstructure of the films.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bormann, R. and Nölting, J., Appl. Phys. Lett. 54, 2148 (1989); R. H. Hammond and R. Bormann, Physica C 162–164, 703 (1989).CrossRefGoogle Scholar
2.Matijasevic, V., Rosenthal, P., Shinohara, K., Marshall, A. F., Hammond, R. H., and Beasley, M. R., J. Mater. Res. 6, 682 (1991).CrossRefGoogle Scholar
3.Gallagher, P. K., Adv. Ceram. Mater. 2, 632 (1987).CrossRefGoogle Scholar
4.Cava, R. J., Batlogg, B., Rabe, K. M., Rietman, E. A., Gallagher, P. K., and Rupp, L. W., Jr., Physica C 156, 523 (1988).CrossRefGoogle Scholar
5.Jorgensen, J. D., Veal, B. W., Paulikas, A. P., Nowicki, L. J., Crabtree, G. W., Claus, H., and Kwok, W. K., Phys. Rev. B 41, 1863 (1990).CrossRefGoogle Scholar
6.Osquiguil, E., Maenhoudt, M., Wuyts, B., and Bruynseraede, Y., Appl. Phys. Lett 60, 1627 (1992).CrossRefGoogle Scholar
7.Tom, D. W., Platzer, R., Gardner, J. A., and Tate, J., Appl. Phys. Lett. 63, 3224 (1993).CrossRefGoogle Scholar
8.Thomsen, C., Liu, R., Bauer, M., Wittlin, A., Genzel, L., Cardona, M., Schönherr, E., Bauerhofer, W., and Künig, W., Solid State Commun. 65, 55 (1988); E. T. Heyen, J. Kircher, and M. Cardona, Phys. Rev. B 45, 3037 (1992).CrossRefGoogle Scholar
9.Catchen, G. L., J. Mater. Educ. 12, 253 (1990); MRS Bull. July 1995, p. 37, and References therein.Google Scholar
10.Schatz, G. and Weidinger, A., Nuclear Condensed Matter Physics (Wiley, New York, 1996).Google Scholar
11. Site identification can be based only upon circumstantial evidence. We believe In substitutes at the Y site, but the exact location of the indium does not affect the conclusions presented here.Google Scholar
12. The degeneracy is further removed by a magnetic field, but the magnetic dipole interaction is not relevant in YBa2Cu3O61x.Google Scholar
13.Platzer, R., Schwenker, R., Tom, D. W., Füssel, A., Tate, J., Gardner, J. A., Evenson, W. E., and Sommers, J. A., Hyperfine Interactions 110, 271286 (1997).CrossRefGoogle Scholar
14.Poulsen, H. F., von Zimmermann, M., Schneider, J. R., Andersen, N. H., Schleger, P., Madsen, J., Hadfield, R., Casalta, H., Liang, R., Dosanjij, P., and Hardy, W., Phys. Rev. B 53 (22), 15 335 (1996).CrossRefGoogle Scholar
15.Ye, J., Nakamura, K., Physica C 254, 113 (1995).CrossRefGoogle Scholar
16.Nakamura, K., Ye, J., and Ishii, A., Physica C 213, 1 (1993).CrossRefGoogle Scholar
17.Ye, J. and Nakamura, K., Phys. Rev. B 48, 7554 (1993).CrossRefGoogle Scholar
18.Attili, R. N., Uhrmacher, M., Lieb, K. P., Ziegeler, L., Mekata, M., and Schwarzmann, E., Phys. Rev. B 53, 600 (1996).CrossRefGoogle Scholar
19.Saitovich, H., Silva, P. R. J., and Rodríguez, A. M., Hyperfine Interactions 73, 277 (1993).CrossRefGoogle Scholar
20. JCPDS cards #39–244 (YCuO2) and #39–245 (BaCu2O2).Google Scholar
21.Marshall, A. F., Matijasevic, V., Rosenthal, P., Shinohara, K., Hammond, R. H., and Beasley, M. R., Appl. Phys. Lett. 57, 1158 (1990).CrossRefGoogle Scholar
22.Eibl, O. and Roas, B., J. Mater. Res. 5, 2620 (1990).CrossRefGoogle Scholar
23.Weidlich, G., Goelz, M., Wang, R., Evenson, W. E., Gardner, J. A., Keszler, D. A., Sommers, J. A., and Ostenson, J. E., J. Mater. Res. 6, 446 (1991).CrossRefGoogle Scholar
24.Füssel, A., Thesis, M. S., Oregon State University, 1993, unpublished.Google Scholar
25.Bartos, A and Uhrmacher, M., Phys. Rev. B 48, 7478 (1993).CrossRefGoogle Scholar