Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T06:41:47.045Z Has data issue: false hasContentIssue false

The ternary system: Aluminum–iron–praseodymium

Published online by Cambridge University Press:  31 January 2011

H. Klesnar
Affiliation:
Institut für Physikalische Chemie der Universität Wien, A-1090 Wien, Währingerstraβe 42, Austria
P. Rogl
Affiliation:
Institut für Physikalische Chemie der Universität Wien, A-1090 Wien, Währingerstraβe 42, Austria
Get access

Abstract

Phase equilibria in the ternary system Pr–Fe–Al have been established in an isothermal section at 800 °C from room temperature x-ray powder diffraction analysis of about 50 alloys, which were melted, annealed at 800 °C, and quenched. Phase equilibria are characterized by the formation of rather extended homogeneous regions, i.e., by a random substitution of Fe/Al in Pr(Al1−xFex)2, 0 ≤ x ≤ 0.15, in Pr2(Fe1−xAlx)17, 0 ≤ x ≤ 0.65, as well as by the formation of at least four ternary compounds. Whereas the existence of PrFe4Al8 with the CeMn4Al8-type structure has been confirmed, there were no indications for a compound “PrFe6Al6” earlier claimed to crystallize with the ThMn12-type structure. Pr6(Fe1−xAlx)14, 0.16 ≤ x ≤ 0.36 with a homogeneous region parallel to the Fe–Al binary, was found to be isotypic with the La6Co11Ga3-type of structure. Pr-rich alloys are liquid at 800 °C, and all the alloys Pr2(Fe1−xAlx)17 with aluminum concentrations less than 5 at.% Al (x ∼ 0.07) enter a two-phase equilibrium with the Pr-rich liquid. At temperatures below 800 °C, alloys with compositions close to 30 at.% Pr and 5 at.% Al show a further ternary phase on solidification, whose crystal structure is related to the La6Co11Ga3-type. PrFe2Al8 is a new representative of the CeFe2Al8-type structure. The crystal structure of the ternary compound richest in Al, PrFe2Al10, has not been solved yet.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Weitzer, F., Hiebl, K., and Rogl, P., J. Appl. Phys. 65, 4963 (1989).CrossRefGoogle Scholar
2Klesnar, H., Hiebl, K., Rogl, P., and Noël, H., J. Less-Common Metals 154, 217 (1989).Google Scholar
3Weitzer, F., Hiebl, K., and Rogl, P., J. Appl. Phys. (in press).Google Scholar
4Weitzer, F., Klesnar, H., Hiebl, K., and Rogl, P., J. Appl. Phys. 67, 2544 (1990).Google Scholar
5Oesterreicher, H., J. Less-Common Metals 25, 341 (1971).Google Scholar
6Buschow, K. H. J., Van Vucht, J. H. N., and Van den Hoogen-hof, W. W., J. Less-Common Metals 50, 145 (1976).CrossRefGoogle Scholar
7Felner, I. and Nowik, I., J. Phys. Chem. Solids 39, 951 (1978).Google Scholar
8Felner, I., J. Less-Common Metals 72, 241 (1980).CrossRefGoogle Scholar
9Villars, P. and Calvert, L. C., Pearsons Handbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, OH, 1985), Vol. 1–3.Google Scholar
10Massalski, T. B., Binary Alloy Phase Diagrams (ASM, Metals Park, OH, 1986).Google Scholar
11Gschneidner, K. A., Jr. and Calderwood, F. W., Bulletin of Alloy Phase Diagrams 10 (1), 31 (1989).CrossRefGoogle Scholar
12van der Kraan, A. M. and Buschow, K. H. J., Physica 138B, 55 (1986).Google Scholar
13Bastin, G. F., van Loo, F. J. J., Vrolijk, J. W. G. A., and Wolff, L. R., J. Cryst. Growth 43, 745 (1978).CrossRefGoogle Scholar
14Griger, A., Stefaniay, V., and Turmezey, T., Z. Metallk. 77, 30 (1986).Google Scholar
15Oesterreicher, H. and Wallace, W. E., J. Less-Common Metals 13, 475 (1967).Google Scholar
16Bodak, O. I. and Gladyshevsky, E.I., Ternary Systems with Rare Earth Metals (Lvov, Vysh. Sch. Izd-Vo, 1985).Google Scholar
17 University Vienna, unpublished research.Google Scholar