Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T15:17:08.619Z Has data issue: false hasContentIssue false

Tensile testing low density multilayers: Aluminum/titanium

Published online by Cambridge University Press:  31 January 2011

D. Josell
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-0001
D. van Heerden
Affiliation:
Johns Hopkins University, Baltimore, Maryland 21218-2680
D. Read
Affiliation:
National Institute of Standards and Technology, Boulder, Colorado 80302
J. Bonevich
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-0001
D. Shechtman
Affiliation:
Technion, Haifa, Israel
Get access

Abstract

Yield stresses, ultimate tensile strengths, and specific strengths of aluminum/titanium multilayer thin films are determined from the results of uniaxial tensile tests. The plasticity in the stress-strain curves, the nature of the fracture surfaces, and the relationship of the yield stress and the bilayer thickness are discussed. Properties are compared with those of other multilayer materials published in the literature.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Was, G. S. and Foecke, T., Thin Solid Films 286, 1 (1996).CrossRefGoogle Scholar
2.Barnett, S. A., in Physics of Thin Films: Mechanic and Dielectric Properties, edited by Francombe, M. H. and Vossen, J. L. (Academic Press, San Diego, 1993), pp. 227.Google Scholar
3.Henning, C. A. O., Boswell, F. W., and Corbett, J. M., Acta Metall. 23, 193 (1975).CrossRefGoogle Scholar
4.Menezes, S. and Anderson, D. P., J. Electrochem. Soc. 137, 440 (1990).CrossRefGoogle Scholar
5.Baral, D., Ketterson, J. B., and Hilliard, J. E., J. Appl. Phys. 57, 1076 (1985).CrossRefGoogle Scholar
6.Bunshah, R. F., Nimmagadda, R., Doerr, H. J., Movchan, B. A., Grechanuk, N. I., and Dabizha, E. V., Thin Solid Films 72, 261 (1980).CrossRefGoogle Scholar
7.Rao, S., Hazzledine, P. M., and Dimiduk, D. M., in Grain-Size and Mechanical Properties—Fundamentals and Applications, edited by Grant, N. J., Armstrong, R. W., Otooni, M. A., and Ishizaki, K. (Mater. Res. Soc. Symp. Proc. 362, Pittsburgh, PA, 1995), pp. 6777.Google Scholar
8.Lehoczky, S. L., J. Appl. Phys. 49, 5479 (1978).CrossRefGoogle Scholar
9.Lehoczky, S. L., Phys. Rev. Lett. 41, 1814 (1978).CrossRefGoogle Scholar
10.Ahuja, R. and Fraser, J. L., J. Electron. Mater. 23, 1027 (1994).CrossRefGoogle Scholar
11.Read, D. T. and Dally, J. W., AMD Vol. 187, Mechanics and Materials for Electronic Packaging: Vol. 2: Thermal and Mechanical Behavior and Modeling, (ASME, 1994), p. 41.Google Scholar
12.van Heerden, D., Josell, D., and Shechtman, D., Acta Mater. 44, 297 (1996).CrossRefGoogle Scholar
13.Shechtman, D., van Heerden, D., and Josell, D., Mater. Lett. 20, 329 (1994).CrossRefGoogle Scholar
14.ASM Metals Reference Book, 2nd ed. (American Society for Metals, Metals Park, OH, 1983).Google Scholar
15.Bunshah, R. F., Nimmagadda, R., Doerr, H. J., Movchan, B. A., Grechanuk, N. I., and Didkin, G. G., Thin Solid Films 112, 227 (1984).CrossRefGoogle Scholar
16.Jankowski, A. and Tsakalakos, T., J. Appl. Phys. 57, 1835 (1985).CrossRefGoogle Scholar
17.Tench, D. M. and White, J. T., J. Electrochem. Soc. 138, 3757 (1991).CrossRefGoogle Scholar
18.Tench, D. and White, J., Metall. Trans. A 15A, 2039 (1984).CrossRefGoogle Scholar
19.Hoffman, C. A. and Weeton, J. W., Metall. Trans. 5, 309 (1974).CrossRefGoogle Scholar
20.Vill, M., Adams, D. P., Yalisove, S. M., and Bilello, M. C., Acta Metall. Mater. 43, 427 (1995).CrossRefGoogle Scholar
21.1994 Annual Book of ASTM Standards Vol. 3.01, Standard Test Methods of Tension Testing of Metallic Foils, Designation E 345-93, (ASTM, Philadelphia, 1994), pp. 376380.Google Scholar