Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-04T19:44:49.201Z Has data issue: false hasContentIssue false

Template synthesis of metal microtubule ensembles utilizing chemical, electrochemical, and vacuum deposition techniques

Published online by Cambridge University Press:  03 March 2011

Charles J. Brumlik
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
Vinod P. Menon
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
Charles R. Martin*
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

Microtubules are an interesting type of microstructure that resemble miniature drinking straws. Such tubular microstructures are found in nature. In addition, we and others have been investigating strategies for making synthetic analogs. We are especially interested in the idea of making metal microtubules. Four procedures for preparing metal microtubules are described in this paper. The general approach, called template-synthesis, entails using the pores in a microporous membrane as templates for forming the tubules. Microporous anodic aluminum oxide membranes and nuclear track-etch membranes are used as the template membranes. Gold and silver microtubules are made with outer diameters as small as 200 nm. These microstructures are characterized by scanning electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nakashima, N., Asakuma, S., and Kunitake, T., J. Am. Chem. Soc. 107, 509510 (1985).CrossRefGoogle Scholar
2Brumlik, C. J. and Martin, C. R., J. Am. Chem. Soc. 113 (8), 31743175 (1991).CrossRefGoogle Scholar
3Martin, C. R., Van Dyke, L. S., Cai, Z., and Liang, W., J. Am. Chem. Soc. 112 (24), 89768977 (1990).CrossRefGoogle Scholar
4Cai, Z., Lei, J., Liang, W., Menon, V., and Martin, C. R., Chem. Mater. 3 (5), 960967 (1991).CrossRefGoogle Scholar
5Cai, Z. and Martin, C. R., J. Am. Chem. Soc. 111, 4138 (1989).CrossRefGoogle Scholar
6Schoen, P. E. and Schnur, J. M., U. S. Pat. Appl. 575 749 (1991); 28 pp. Avail. NTIS Order No. PAT-APPL-7-575 749.Google Scholar
7Rudolph, A. S., Calvert, J. M., Ayers, M. E., and Schnur, J. M., J. Am. Chem. Soc. 111 (22), 85168517 (1989).CrossRefGoogle Scholar
8Schnur, J. M., Price, R., Schoen, P., Yager, P., Calvert, J. M., Georger, J., and Singh, A., Thin Solid Films 152 (1–2), 181206 (1987).CrossRefGoogle Scholar
9Mintmire, J. W., Dunlap, B. I., and White, C. T., Phys. Rev. Lett. 68 (5), 631634 (1992).CrossRefGoogle Scholar
10Krebs, J. J., Rubinstein, M., Lubitz, P., Harford, M. Z., Baral, S., Shashidhar, R., Ho, Y. S., Chow, G. M., and Qadri, S., J. Appl. Phys. 70 (10, Pt. 2) 64046406 (1991).CrossRefGoogle Scholar
11Price, R. and Patchan, M., J. Microencapsulation 8 (3), 301306 (1991).CrossRefGoogle Scholar
12Plant, A. L., Benson, D. M., and Trusty, G. L., Biophys. J. 57 (5), 925933 (1990).CrossRefGoogle Scholar
13Burke, T. G., Rudolph, A. S., Price, R. R., Sheridan, J. P., Dalziel, A. W., Singh, A., and Schoen, P. E., Chem. Phys. Lipids 48 (3–4), 215230 (1988).CrossRefGoogle Scholar
14Lee, K. A. B., J. Phys. Chem. 93 (2), 926931 (1989).CrossRefGoogle Scholar
15Caffrey, M., Hogan, J., and Rudolph, A. S., Biochemistry 30 (8), 21342146 (1991).CrossRefGoogle Scholar
16Woods, D. M., Li, Z., Rosenblatt, C., Yager, P., and Schoen, P. E. Jr., Mol. Cryst. Liq. Cryst. 167, 16 (1989).Google Scholar
17Rudolph, A. S., Singh, B. P., Singh, A., and Burke, T. G., Biochim. Biophys. Acta 943 (3), 454462 (1988).CrossRefGoogle Scholar
18Li, Z., Rosenblatt, C., Yager, P., and Schoen, P. E., Biophys. J. 54 (2), 289294 (1988).CrossRefGoogle Scholar
19Rosenblatt, C., Yager, P., and Schoen, P. E., Biophys. J. 52 (2), 295301 (1987).CrossRefGoogle Scholar
20Spohr, R., U. S. Patent 4 338 164 (1982).CrossRefGoogle Scholar
21Fischer, B. E. and Spohr, R., Rev. Mod. Phys. 55 (4), 907948 (1983).CrossRefGoogle Scholar
22Stockton, W., Lodge, J., Rachford, F., Orman, M., Falco, F., and Schoen, P., J. Appl. Phys. 70 (9), 46794686 (1991).CrossRefGoogle Scholar
23Iijima, S., Nature 354, 5658 (1991).CrossRefGoogle Scholar
24Biotechnical Applications of Lipid Microstructures, 1st ed., edited by Gaber, B. P., Schnur, J. M., and Chapman, D. (Plenum Publishing Corp., New York, 1988), Vol. 238.CrossRefGoogle Scholar
25Georger, J. H., Singh, A., Price, R. R., Schnur, J. M., Yager, P., and Schoen, P. E., J. Am. Chem. Soc. 109 (20), 61696175 (1987).CrossRefGoogle Scholar
26Methods in Enzymology (Structural and Contractile Proteins), 1st ed., edited by Frederiksen, D. W. and Cunningham, L. W. (Academic Press, New York, 1982), Vol. 85, pp. 376417.Google Scholar
27Carlier, M. F., Mol. Cell. Biochem. 47 (2), 97113 (1982).CrossRefGoogle Scholar
28Weisenberg, R. C., Science 177, 11041105 (1972).CrossRefGoogle Scholar
29Dravid, V. P., Lin, X., Wang, W., Wang, X. K., Yee, A., Ketterson, J. B., and Chang, R. P. H., Science 259, 16011604 (1993).CrossRefGoogle Scholar
30Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S., Appl. Phys. Lett. 60 (18), 22042206 (1992).CrossRefGoogle Scholar
31Iijima, S., Ishihashi, T., and Ando, Y., Nature 356 (6372), 776778 (1992).Google Scholar
32Yeager, P. E., Schnur, J. M., and Burke, T. G., U. S. Pat. Appl. 256 680 (1989), 31 pp. Avail. NTIS Order No. PAT-APPL-7-256 680.Google Scholar
33Rudolph, A. S., Calvert, J. M., Schoen, P. E., and Schnur, J. M., Adv. Exp. Med. Biol. 238 (Biotechnol. Appl. Lipid Microstruct.), pp. 305320.CrossRefGoogle Scholar
34Yager, P., Price, R. R., Schnur, J. M., Schoen, P. E., Singh, A., and Rhodes, D. G., Chem. Phys. Lipids 46 (3), 171179 (1988).CrossRefGoogle Scholar
35Schoen, P. E., Yager, P., and Schnur, J. M., U. S. Pat. Appl. 852 596 (1986), 24 pp. Avail. NTIS Order No. PAT-APPL-6-852 596.Google Scholar
36Singh, A., Price, R., Schnur, J. M., Schoen, P. E., and Yager, P., Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 27 (2), 393394 (1986).Google Scholar
37Schnur, J. M., Price, R., Yager, P., Schoen, P., and Georger, J. H., U. S. Patent 4 877 501 (1989).Google Scholar
38Chow, G. M., Stockton, W. B., Price, R., Baral, S., Ting, A. C., Ratna, B. R., Schoen, P. E., Schnur, J. M., and Bergeron, G. L., Mater. Sci. Eng. A 158 (1), 16 (1992).CrossRefGoogle Scholar
39Alltech Associates, I., Deerfield, IL.Google Scholar
40Nuclepore Corp., Pleasanton, CA.Google Scholar
41Poretics Inc., Livermore, CA.Google Scholar
42Cyclopore, Louvain-La-Neuve, Belgium.Google Scholar
43Behroozi, F., Orman, M., Reese, R., Stockton, W., Calvert, J., Rachford, F., and Schoen, P., J. Appl. Phys. 68 (7), 3688 (1990).CrossRefGoogle Scholar
44Ferrar, W. T., O'Brien, D. F., Warshawsky, A., and Voycheck, C. L., J. Am. Chem. Soc. 110, 288289 (1988).CrossRefGoogle Scholar
45Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 1st ed. (John Wiley & Sons, Inc., New York, 1980), p. 401.Google Scholar
46Carron, K. T., Brumlik, C. J., Mullen, K. I., and Martin, C. R. (unpublished research).Google Scholar
47Fleischmann, M., Bandyopadyay, S., and Pons, S., J. Phys. Chem. 89, 5537 (1985).CrossRefGoogle Scholar
48Randall, J. N., Reed, M. A., and Frazier, G. A., J. Vac. Sci. Technol. B 7 (6), 1398 (1989).CrossRefGoogle Scholar
49Oro, J. A. and Wolfe, J. C., J. Vac. Sci. Technol. Bl (4), 1088 (1983).CrossRefGoogle Scholar
50Hazlebeck, D. A. and Talbot, J. B., J. Electrochem. Soc. 138 (7), 19982002 (1991).CrossRefGoogle Scholar
51Furneaux, R. C., Rigby, W. R., and Davidson, A. P., Nature 337 (6203), 147 (1989).CrossRefGoogle Scholar
52Thompson, G. E. and Wood, G. C., in Corrosion: Aqueous Processes and Passive Films, 1st ed., edited by Scully, J. C. (Academic Press, London, 1983), p. 205.CrossRefGoogle Scholar
53Brumlik, C. J., Martin, C. R., and Tokuda, K., Anal. Chem. 64 (10), 12011203 (1991).CrossRefGoogle Scholar
54Van Dyke, L. S. and Martin, C. R., Langmuir 6, 1118 (1990).CrossRefGoogle Scholar
55Knight, P., Bio/Technology 6, 10551058 (1988).Google Scholar
56Fleisher, R. L., Price, P. B., and Walker, R. M., Nuclear Tracks in Solids: Principles and Applications (University of California Press, Berkeley, CA, 1975).CrossRefGoogle Scholar
57Durrani, S. A. and Bull, R. K., Solid State Nuclear Track Detection: Principles, Methods and Applications, 1st ed. (Pergamon Press, Elmsford, NY, 1987), Vol. 111; International Series in Natural Philosophy.Google Scholar
58Vater, P., Nucl. Tracks Radiat. Meas. 15 (1–4), 743749 (1988).CrossRefGoogle Scholar
59Chakarvarti, S. K. and Vetter, J., Nucl. Instrum. Methods Phys. Res. B62, 109115 (1991).CrossRefGoogle Scholar
60Guillot, G. and Rondelez, F. J., J. Appl. Phys. 52 (12), 71557164 (1981).CrossRefGoogle Scholar
61Paretzke, H. G., Gruhn, T. A., and Benton, E. V., Nucl. Instrum. Methods 107 (3), 597600 (1973).CrossRefGoogle Scholar
62Guo, S. L., Tress, G., Vater, P., Khan, E. U., Dersch, R., Plachky, M., Brandt, R., and Khan, H. A., Nucl. Tracks Radiat. Meas. 11 (1–2), 14 (1986).CrossRefGoogle Scholar
63Tress, G., Khan, E. U., Vater, P., Werner, W., Brandt, R., Kadner, M., and Spohr, R., in Aerosols Sci., Med. Technol. —Aerosols Ind. Processes —Conf., edited by Stoeber, W. and Hochrainer, D. G. (Aerosolforsch, Schmallenberg, Fed. Rep. Ger. 1981), pp. 116120.Google Scholar
64Brandt, R., Dersch, R., Rudolph, W., Schmelzer, W., and Vater, P., Nucl. Tracks 12 (1–6), 981984 (1986).CrossRefGoogle Scholar
65Jamil, K., Khan, E. U., Guo, S. L., Dersch, R., Vater, P., Brandt, R., Spurny, K. R., and Molter, W., Nucl. Tracks 12 (1–6), 977980 (1986).CrossRefGoogle Scholar
66Tierney, M. J. and Martin, C. R., J. Phys. Chem. 93, 2878 (1989).CrossRefGoogle Scholar
67Electroless Plating: Fundamentals and Applications, edited by Mallory, G. O. and Hajdu, J. B., 1st ed. (American Electroplaters and Surface Finishers Society, Orlando, FL, 1990), p. 458.Google Scholar
68Cale, T. S. and Raupp, G. B., J. Vac. Sci. Technol. B 8 (4), 649655 (1990).CrossRefGoogle Scholar
69Cale, T. S., J. Vac. Sci. Technol. B 9 (5), 25512553 (1991).CrossRefGoogle Scholar
70Soriaga, M. P., Chem. Rev. 90 (5), 771 (1990).CrossRefGoogle Scholar
71Miller, C. J. and Majda, M., Anal. Chem. 60 (11), 11681176 (1988).CrossRefGoogle Scholar
72Landau, U., AlChE Symp. Ser. 79 (229), 218225 (1983).Google Scholar
73Jaksic, M. M. and Komnenic, V. P., Exp. Therm. Fluid Sci. 4 (1), 5675 (1991).CrossRefGoogle Scholar
74Electroless Plating: Fundamentals and Applications, edited by Mallory, G. O. and Hajdu, J. B., 1st ed. (American Electroplaters and Surface Finishers Society, Orlando, FL, 1990), p. 458.Google Scholar
75Cheng, I. F. and Martin, C. R., Anal. Chem. 60 (19), 21632165 (1988).CrossRefGoogle Scholar
76Martin, C. R., Cai, Z., Van Dyke, L. S., and Liang, W., Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 32 (2), 8990 (1991).Google Scholar
77Penner, R. M. and Martin, C. R., J. Electrochem. Soc. 133 (10), 2206 (1986).CrossRefGoogle Scholar
78Price, R. R. and Brady, R. F. Jr., U. S. Pat. Appl. 343 762 (1990), 22 pp. Avail. NTIS Order No. PAT-APPL-7-343 762.Google Scholar
79Meier, M., Wokaun, A., and Vo-Dinh, T., J. Phys. Chem. 89, 18431846 (1985).CrossRefGoogle Scholar