Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T01:46:18.422Z Has data issue: false hasContentIssue false

Temperature-dependent mechanical behavior of three-dimensionally ordered macroporous tungsten

Published online by Cambridge University Press:  08 June 2020

Kevin M. Schmalbach
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota55455, USA
Zhao Wang
Affiliation:
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota55455, USA
R. Lee Penn
Affiliation:
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota55455, USA
David Poerschke
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota55455, USA
Antonia Antoniou
Affiliation:
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, USA
Andreas Stein*
Affiliation:
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota55455, USA
Nathan A. Mara*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota55455, USA
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Porous metals represent a class of materials where the interplay of ligament length, width, node structure, and local geometry/curvature offers a rich parameter space for the study of critical length scales on mechanical behavior. Colloidal crystal templating of three-dimensionally ordered macroporous (3DOM, i.e., inverse opal) tungsten provides a unique structure to investigate the mechanical behavior at small length scales across the brittle–ductile transition. Micropillar compression tests show failure at 50 MPa contact pressure at 30 °C, implying a ligament yield strength of approximately 6.1 GPa for a structure with 5% relative density. In situ SEM frustum indentation tests with in-plane strain maps perpendicular to loading indicate local compressive strains of approximately 2% at failure at 30 °C. Increased sustained contact pressure is observed at 225 °C, although large (20%) nonlocal strains appear at 125 °C. The elevated-temperature mechanical performance is limited by cracks that initiate on planes of greatest shear under the indenter.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

These authors contributed equally to this work.

References

Hodge, A.M., Biener, J., Hayes, J.R., Bythrow, P.M., Volkert, C.A., and Hamza, A.V.: Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55(4), 1343 (2007).CrossRefGoogle Scholar
Volkert, C.A., Lilleodden, E.T., Kramer, D., and Weissmüller, J.: Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89(6), 10 (2006).CrossRefGoogle Scholar
Zhao, M., Issa, I., Pfeifenberger, M.J., Wurmshuber, M., and Kiener, D.: Tailoring ultra-strong nanocrystalline tungsten nanofoams by reverse phase dissolution. Acta Mater. 182, 215 (2020).CrossRefGoogle Scholar
Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, 1988).Google Scholar
Hu, K., Ziehmer, M., Wang, K., and Lilleodden, E.T.: Nanoporous gold: 3D structural analyses of representative volumes and their implications on scaling relations of mechanical behaviour. Philos. Mag. 96(32–34), 3322 (2016).CrossRefGoogle Scholar
Jin, H.J., Kurmanaeva, L., Schmauch, J., Rösner, H., Ivanisenko, Y., and Weissmüller, J.: Deforming nanoporous metal: Role of lattice coherency. Acta Mater. 57(9), 2665 (2009).CrossRefGoogle Scholar
Caro, M., Mook, W.M., Fu, E.G., Wang, Y.Q., Sheehan, C., Martinez, E., Baldwin, J.K., and Caro, A.: Radiation induced effects on mechanical properties of nanoporous gold foams. Appl. Phys. Lett. 104(23) (2014).CrossRefGoogle Scholar
Liu, R., Pathak, S., Mook, W.M., Baldwin, J.K., Mara, N.A., and Antoniou, A.: In situ frustum indentation of nanoporous copper thin films. Int. J. Plast. 98, 139 (2017).CrossRefGoogle Scholar
Volkert, C.A. and Lilleodden, E.T.: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86(33-35 SPEC. ISSUE), 5567 (2006).CrossRefGoogle Scholar
Stein, A., Wilson, B.E., and Rudisill, S.G.: Design and functionality of colloidal-crystal-templated materials – chemical applications of inverse opals. Chem. Soc. Rev. 42, 2763 (2013).CrossRefGoogle ScholarPubMed
Schroden, R.C., Al-Daous, M., Blanford, C.F., and Stein, A.: Optical properties of inverse opal photonic crystals. Chem. Mater, 14(8), 3305 (2002).CrossRefGoogle Scholar
Wang, Z., Li, F., Ergang, N.S., and Stein, A.: Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon-carbon nanocomposites. Chem. Mater. 18(23), 5543 (2006).CrossRefGoogle Scholar
Ergang, N.S., Fierke, M.A., Wang, Z., Smyrl, W.H., and Stein, A.: Fabrication of a fully infiltrated three-dimensional solid-state interpenetrating electrochemical cell. J. Electrochem. Soc. 154(12), A1135 (2007).CrossRefGoogle Scholar
do Rosário, J.J., Berger, J.B., Lilleodden, E., McMeeking, R.M., and Schneider, G.A.: The stiffness and strength of metamaterials based on the inverse opal architecture. Extrem. Mech. Lett. 12, 86 (2017).CrossRefGoogle Scholar
Toivola, Y., Stein, A., and Cook, R.F.: Depth-sensing indentation response of ordered silica foam. J. Mater. Res. 19(01), 260 (2004).CrossRefGoogle Scholar
Denny, N.R., Li, F., Norris, D.J., and Stein, A.: In situ high temperature TEM analysis of sintering in nanostructured tungsten and tungsten-molybdenum alloy photonic crystals. J. Mater. Chem. 20(8), 1538 (2010).CrossRefGoogle Scholar
Denny, N.R., Han, S., Turgeon, R.T., Lytle, J.C., Norris, D.J., and Stein, A.: Synthetic approaches toward tungsten photonic crystals for thermal emission. Proc. SPIE 6005(November), 600505 (2005).Google Scholar
Denny, N.R., Han, S.E., Norris, D.J., and Stein, A.: Effects of thermal processes on the structure of monolithic tungsten and tungsten alloy photonic crystals. Chem. Mater. 19(18), 4563 (2007).CrossRefGoogle Scholar
Curti, M., López Robledo, G., dos Santos Claro, P.C., Ubogui, J.H., and Mendive, C.B.: Characterization of titania inverse opals prepared by two distinct infiltration approaches. Mater. Res. Bull. 101(January), 12 (2018).CrossRefGoogle Scholar
Pikul, J.H., Özerinç, S., Liu, B., Zhang, R., Braun, P.V., Deshpande, V.S., and King, W.P.: High strength metallic wood from nanostructured nickel inverse opal materials. Sci. Rep. 9(719), 1 (2019).CrossRefGoogle ScholarPubMed
Yan, H., Blanford, C.F., Holland, B.T., Parent, M., Smyrl, W.H., and Stein, A.: A chemical synthesis of periodic macroporous NiO and metallic Ni. Adv. Mater. 11(12), 1003 (1999).3.0.CO;2-K>CrossRefGoogle Scholar
Pham, Q.N., Barako, M.T., Tice, J., and Won, Y.: Microscale liquid transport in polycrystalline inverse opals across grain boundaries. Sci. Rep. 7(1), 1 (2017).CrossRefGoogle ScholarPubMed
Zhang, C., Palko, J.W., Barako, M.T., Asheghi, M., Santiago, J.G., and Goodson, K.E.: Enhanced capillary-fed boiling in copper inverse opals via template sintering. Adv. Funct. Mater. 28(41), 1 (2018).Google Scholar
Weinberger, C.R., Boyce, B.L., and Battaile, C.C.: Slip planes in bcc transition metals. Int. Mater. Rev. 58(5), 296 (2013).CrossRefGoogle Scholar
Hintsala, E.D., Teresi, C., Wagner, A.J., Mkhoyan, K.A., and Gerberich, W.W.: Fracture transitions in iron: Strain rate and environmental effects. J. Mater. Res. 29(14), 1513 (2014).CrossRefGoogle Scholar
Jatavallabhula, K. and Gerberich, W.W.: Fatigue thresholds and ductile-brittle transitions in Ti-30Mo. Fatigue Fract. Eng. Mater. Struct. 4(2), 173 (1981).CrossRefGoogle Scholar
Wronski, A.S., Chilton, A.C., and Capron, E.M.: The ductile-brittle transition in polycrystalline molybdenum. Acta Metall. 17, 751 (1969).CrossRefGoogle Scholar
Harris, M.D., Grogg, W.J., Akoma, A., Hayes, B.J., Reidy, R.F., Imhoff, E.F., and Collins, P.C.: Revisiting (some of) the lasting impacts of the liberty ships via a metallurgical analysis of rivets from the SS “John W. Brown”. Jom 67(12), 2965 (2015).CrossRefGoogle Scholar
Bolton, J.P. and Foster, C.R.: Battlefield use of depleted uranium and the health of veterans. J. R. Army Med. Corps. 148(3), 221 (2002).CrossRefGoogle ScholarPubMed
Abernethy, R.G.: Predicting the performance of tungsten in a fusion environment: A literature review. Mater. Sci. Technol. 33(4), 388 (2017).CrossRefGoogle Scholar
Gumbsch, P., Riedle, J., Hartmaier, A., and Fischmeister, H.F.: Controlling factors for the brittle-to-ductile transition in tungsten single crystals. Science 282(5392), 1293 (1998).CrossRefGoogle ScholarPubMed
El-Atwani, O., Gigax, J., Chancey, M., Baldwin, J.K., and Maloy, S.A.: Nanomechanical properties of pristine and heavy ion irradiated nanocrystalline tungsten. Scr. Mater. 166, 159 (2019).CrossRefGoogle Scholar
Holland, B.T., Blanford, C.F., Do, T., and Stein, A.: Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem. Mater. 11(3), 795 (1999).CrossRefGoogle Scholar
Jiang, P., Bertone, J.F., Hwang, K.S., and Colvin, V.L.: Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11(8), 2132 (1999).CrossRefGoogle Scholar
Suh, Y., Pham, Q., Shao, B., and Won, Y.: The control of colloidal grain boundaries through evaporative vertical self-assembly. Small 15(12), 1 (2019).Google ScholarPubMed
Tirumkudulu, M.S. and Russel, W.B.: Cracking in drying latex films. Langmuir 21(11), 4938 (2005).CrossRefGoogle ScholarPubMed
Singh, K.B. and Tirumkudulu, M.S.: Cracking in drying colloidal films. Phys. Rev. Lett. 98(21), 1 (2007).CrossRefGoogle ScholarPubMed
Rudisill, S.G., Hein, N.M., Terzic, D., and Stein, A.: Controlling microstructural evolution in pechini gels through the interplay between precursor complexation, step-growth polymerization, and template confinement. Chem. Mater. 25(5), 745 (2013).CrossRefGoogle Scholar
Ast, J., Schwiedrzik, J.J., Wehrs, J., Frey, D., Polyakov, M.N., Michler, J., and Maeder, X.: The brittle-ductile transition of tungsten single crystals at the micro-scale. Mater. Des. 152, 168 (2018).CrossRefGoogle Scholar
Bart-Smith, H., Bastawros, A.F., Mumm, D.R., Evans, A.G., Sypeck, D.J., and Wadley, H.N.G.: Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping. Mater. Res. Soc. Symp. – Proc. 521(10), 71 (1998).CrossRefGoogle Scholar
Bastawros, A.F., Bart-Smith, H., and Evans, A.G.: Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam. J. Mech. Phys. Solids 48(2), 301 (2000).CrossRefGoogle Scholar
Issen, K.A. and Rudnicki, J.W.: Conditions for compaction bands in porous rock. J. Geophys. Res. Solid Earth 105(B9), 21529 (2000).CrossRefGoogle Scholar
Meza, L.R., Das, S., and Greer, J.R.: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345(6202), 1322 (2014).CrossRefGoogle ScholarPubMed
Schneider, A.S., Kaufmann, D., Clark, B.G., Frick, C.P., Gruber, P.A., Monig, R., Kraft, O., and Arzt, E.: Correlation between critical temperature and strength of small-scale bcc pillars. Phys. Rev. Lett. 103(105501), 105501 (2009).CrossRefGoogle ScholarPubMed
Schneider, A.S., Frick, C.P., Clark, B.G., Gruber, P.A., and Arzt, E.: Influence of orientation on the size effect in bcc pillars with different critical temperatures. Mater. Sci. Eng. A 528(3), 1540 (2011).CrossRefGoogle Scholar
Vlasov, Y.A., Bo, X.Z., Sturm, J.C., and Norris, D.J.: On-chip natural assembly of silicon photonic bandgap crystals. Nature 414(6861), 289 (2001).CrossRefGoogle ScholarPubMed
Wong, S., Kitaev, V., and Ozin, G.A.: Colloidal crystal films: advances in universality and perfection. J. Am. Chem. Soc. 125(50), 15589 (2003).CrossRefGoogle ScholarPubMed
Blaber, J., Adair, B., and Antoniou, A.: Ncorr: Open-source 2D digital image correlation Matlab Software. Exp. Mech. 55(6), 1105 (2015).CrossRefGoogle Scholar
Supplementary material: File

Schmalbach et al. supplementary material

Schmalbach et al. supplementary material

Download Schmalbach et al. supplementary material(File)
File 2.3 MB