Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T11:44:03.516Z Has data issue: false hasContentIssue false

Systematic Study of Graphite Encapsulated Nickel Nanocrystal Synthesis with Formation Mechanism Implications

Published online by Cambridge University Press:  31 January 2011

Jonathon J. Host
Affiliation:
Department of Materials Science and Engineering & Materials Research Center, Northwestern University, Evanston, Illinois 60208
Vinayak P. Dravid*
Affiliation:
Department of Materials Science and Engineering & Materials Research Center, Northwestern University, Evanston, Illinois 60208
Mao-Hua Teng
Affiliation:
Department of Geology, National Taiwan University, 245 Chou-Shan Road, Taipei, Taiwan, Republic of China
*
a)Address correspondence to this author.
Get access

Abstract

By systematically varying the carbon content, chamber pressure, arc current, and blowing gas velocity in a tungsten-arc encapsulation setup, the effects of each of these variables on the encapsulation of nickel in graphite layers were observed. The data from these optimally designed experiments revealed that the properties of the arc translate into changes in the encapsulated product. Specifically, a larger, hotter arc results in more encapsulation in the final sample. These findings, along with evidence of graphite layers which have formed on precrystallized particles, indicate that the graphite layers may form by two sequential formation steps. The first step is the simple phase segregation of carbon from a cooling liquid particle, resulting in surface graphite. The second step is the growth of carbon on a crystallized nickel particle, regardless of the temperature at which this occurs. The proposed formation mechanism has significant implications for both a scientific understanding of the encapsulation phenomena, and possible commercial applications.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yosida, Y., Appl. Phys. Lett. 62, 3447 (1993).CrossRefGoogle Scholar
2.Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, M., Sumiyama, K., Suzuki, K., Kasuya, A., and Nishina, Y., J. Phys. Chem. Solids 54, 1849 (1993).CrossRefGoogle Scholar
3.McHenry, M. E., Majetich, S. A., Artman, J. O., DeGraef, M., and Staley, S. W., Phys. Rev. B 49, 11 358 (1994).CrossRefGoogle Scholar
4.Majetich, S. A., Artman, J. O., McHenry, M. E., Nuhfer, N. T., and Staley, S. W., Phys. Rev. B 48, 16 845 (1993).CrossRefGoogle Scholar
5.Murakami, Y., Shibata, T., Okuyama, K., Arai, T., Suematsu, H., and Yoshida, Y., J. Phys. Chem. Solids 54, 18611870 (1993).CrossRefGoogle Scholar
6.Brunsman, E. M., Sutton, R., Bortz, E., Kirkpatrick, S., Midelfort, K., Williams, J., Smith, P., McHenry, M. E., Majetich, S. A., Artman, J. O., De Graef, M., and Staley, S. W., J. Appl. Phys. 75, 5882 (1994).CrossRefGoogle Scholar
7.Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Yamamuro, S., Wakoh, K., Sumiyama, K., Suzuki, K., and Kasuya, A., J. Appl. Phys. 75, 134 (1994).CrossRefGoogle Scholar
8.Dravid, V. P., Host, J. J., Teng, M. H., Elliott, B. R., Hwang, J-H., Johnson, D. L., Mason, T. O., and Weertman, J. R., Nature (London) 374, 602 (1995).CrossRefGoogle Scholar
9.Lin, X., Wang, X. K., Dravid, V. P., Chang, R. P. H., and Ketterson, J. B., Appl. Phys. Lett. 64, 181 (1994).CrossRefGoogle Scholar
10.Majetich, S. A., Scott, J. H., Brunsman, E. M., Kirkpatrick, S., McHenry, M. E., and Winkler, D. C., ECS Proceedings-Fullerenes: Physics, Chemistry, and New Directions VII (1995).Google Scholar
11.McHenry, M. E., Brunsman, E. M., and Majetich, S. A., unpublished.Google Scholar
12.Seraphin, S., Wang, S., Zhou, D., and Jiao, J., Chem. Phys. Lett. 228, 506 (1995).CrossRefGoogle Scholar
13.Host, J. J., Teng, M. H., Elliott, B. R., Hwang, J., Mason, T. O., Johnson, D. L., Weertman, J. R., and Dravid, V. P., J. Mater. Res. 12, 16 (1997).CrossRefGoogle Scholar
14.Host, J., Ph.D. Dissertation, Northwestern University (June 1997).Google Scholar
15.Elliott, B. R., Host, J. J., Dravid, V. P., Teng, M. H., and Johnson, D. L., unpublished.Google Scholar
16.Guerret-Piecourt, C., LeBouar, L., Lolseau, A., and Pascard, H., Nature (London) 372, 761 (1994).CrossRefGoogle Scholar
17.Majetich, S. A., Scott, J. H., and McHenry, M. E., in Science and Technology of Fullerene Materials, edited by Bernier, P., Bethune, D. S., Chiang, L. Y., Ebbesen, T. W., Metzger, R. M., and Mintmire, J. W. (Mater. Res. Soc. Symp. Proc. 359, Pittsburgh, PA, 1995), p. 29.Google Scholar
18.Saito, Y., Yoshikawa, T., Okuda, M., Ohkohchi, M., Ando, Y., Kasuya, A., and Nishina, Y., Chem. Phys. Lett. 209, 72 (1993).CrossRefGoogle Scholar
19.Saito, Y., Okuda, M., Fujimoto, N., Yoshikawa, T., Tomita, M., and Hayashi, T., Jpn. J. Appl. Phys. 33, L526 (1994).CrossRefGoogle Scholar
20.Saito, Y., Okuda, M., Fujimoto, N., and Yoshikawa, T., J. Phys. Chem. 98, 6696 (1994).CrossRefGoogle Scholar
21.Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Yamamuro, S., Wakoh, K., Sumiyama, K., Suzuki, K., Kasuya, A., and Nishina, Y., Chem. Phys. Lett. 212, 379 (1993).CrossRefGoogle Scholar
22.Seraphin, S., Zhou, D., and Jiao, J., J. Appl. Phys. 80, 2097 (1996).CrossRefGoogle Scholar
23.Seraphin, S., J. Electrochem. Soc. 142, 290 (1995).CrossRefGoogle Scholar
24.Seraphin, S., Zhou, D., Jiao, J., Minke, M., and Wang, S., Chem. Phys. Lett. 217, 191 (1994).CrossRefGoogle Scholar
25.Subramoney, S., Proceedings of the Symposium on Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, edited by Kadish, K. M. and Ruoff, R. S., 185th Meeting of the Electrochemical Society, May 23–27 (1994), pp. 14141418.Google Scholar
26.Dravid, V. P., Teng, M. H., Host, J-J., Elliott, B. R., Johnson, D. L., Mason, T. O., Weertman, J. R., and Hwang, J-H., United States Patent Office; Vol. 5,472,749 (Northwestern University, USA, 1995).Google Scholar
27.Krätschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Nature (London) 347, 354 (1990).CrossRefGoogle Scholar
28.Teng, M. H., Host, J. J., Hwang, J-H., Elliott, B. R., Weertman, J. R., Mason, T. O., Dravid, V. P., and Johnson, D. L., J. Mater. Res. 10, 1 (1995).CrossRefGoogle Scholar
29.Iijima, S., Ichihashi, T., and Ando, Y., Nature (London) 356, 776 (1992).Google Scholar
30.Seraphin, S., Zhou, D., and Jiao, J., Carbon 31, 1212 (1993).CrossRefGoogle Scholar
31.Haller, H., Haller and Co., Cleveland, OH (1992).Google Scholar
32.Zhou, D., Seraphin, S., and Wang, S., Appl. Phys. Lett. 65, 1593 (1994).CrossRefGoogle Scholar
33. Unpublished research on the production of unencapsulated nanocrystals by arc evaporation conducted between February '95 and April '95 by Johnson, D. L., Elliott, B. R., Host, J. J., and Dravid, V. P. at Northwestern University, Evanston, IL.Google Scholar
34.Honig, R. E. and Kramer, D. A., RCA Review 30, 285305 (1969).Google Scholar
35.Phase Diagrams of Binary Nickel Alloys (1991).Google Scholar
36.Subramoney, S., Van Kavelaar, P., Ruoff, R., Lorents, D., and Kazmer, A., Proceedings of the Symposium on Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, edited by Kadish, K. M. and Ruoff, R. S., 185th Meeting of the Electrochemical Society, May 23–27 (1994).Google Scholar
37.Saito, Y., Okuda, M., Yoshikawa, T., Bandow, S., Yamamuro, S., Wakoh, K., Sumiyama, K., and Suzuki, K., Jpn. J. Appl. Phys. 33, L18689 (1994).CrossRefGoogle Scholar