Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T08:17:32.712Z Has data issue: false hasContentIssue false

Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles

Published online by Cambridge University Press:  30 April 2019

Wenhui Ling
Affiliation:
College of Animal Science and Technology, Southwest University, Chongqing 400715, China
Mingyu Wang
Affiliation:
College of Animal Science and Technology, Southwest University, Chongqing 400715, China
Chunxia Xiong
Affiliation:
College of Animal Science and Technology, Southwest University, Chongqing 400715, China
Dengfeng Xie
Affiliation:
College of Animal Science and Technology, Southwest University, Chongqing 400715, China
Qiyu Chen
Affiliation:
College of Animal Science and Technology, Southwest University, Chongqing 400715, China
Xinyue Chu
Affiliation:
College of Animal Science and Technology, Southwest University, Chongqing 400715, China
Xiaoyan Qiu
Affiliation:
College of Animal Science and Technology, Southwest University, Chongqing 400715, China
Yuemin Li
Affiliation:
College of Animal Science and Technology, Southwest University, Chongqing 400715, China
Xiong Xiao*
Affiliation:
College of Animal Science and Technology, Southwest University, Chongqing 400715, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Magnetic iron oxide nanoparticles (MIONPs) are particularly attractive in biosensor, antibacterial activity, targeted drug delivery, cell separation, magnetic resonance imaging tumor magnetic hyperthermia, and so on because of their particular properties including superparamagnetic behavior, low toxicity, biocompatibility, etc. Although many methods had been developed to produce MIONPs, some challenges such as severe agglomeration, serious oxidation, and irregular size are still faced in the synthesis of MIONPs. Thus, various strategies had been developed for the surface modification of MIONPs to improve the characteristics of them and obtain multifunctional MIONPs, which will widen the applicational scopes of them. Therefore, the processes, mechanisms, advances, advantages, and disadvantages of six main approaches for the synthesis of MIONPs; surface modification of MIONPs with inorganic materials, organic molecules, and polymer molecules; applications of MIONPs or modified MIONPs; the technical challenges of synthesizing MIONPs; and their limitations in biomedical applications were described in this review to provide the theoretical and technological guidance for their future applications.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

Sun, T., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M., and Xia, Y.: Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. 53, 12320 (2014).Google ScholarPubMed
Ei-Boubbou, K.: Magnetic iron oxide nanoparticles as drug carriers: Preparation, conjugation and delivery. Nanomedicine 2, 1 (2018).Google Scholar
Luo, X., Peng, X., Hou, J., Wu, S., Shen, J., and Wang, L.: Folic acid-functionalized polyethylenimine superparamagnetic iron oxide nanoparticles as theranostic agents for magnetic resonance imaging and PD-L1 siRNA delivery for gastric cancer. Int. J. Nanomed. 12, 5331 (2017).CrossRefGoogle ScholarPubMed
Ma, W., Xie, Q., Zhang, B., Chen, H., Tang, J., Lei, Z., Wu, M., Zhang, D., and Hu, J.: Neural induction potential and MRI of ADSCs labeled cationic superparamagnetic iron oxide nanoparticle in vitro. Contrast Media Mol. Imaging 2018, 1 (2018).Google ScholarPubMed
Lingamdinne, L.P., Chang, Y.Y., Yang, J.K., Singh, J., Choi, E.H., Shiratani, M., Koduru, J.R., and Attri, P.: Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chem. Eng. J. 307, 74 (2017).CrossRefGoogle Scholar
Bull, E., Madani, S., Sheth, R., Seifalian, A., Green, M., and Seifalian, A.: Stem cell tracking using iron oxide nanoparticles. Int. J. Nanomed. 9, 1641 (2014).Google ScholarPubMed
Feijoo, S., Gonzalez-Garca, S., Moldes-Diz, Y., Vazquez-Vazquez, C., Feijoo, G., and Moreira, M.T.: Comparative life cycle assessment of different synthesis routes of magnetic nanoparticles. J. Cleaner Prod. 143, 528 (2017).CrossRefGoogle Scholar
Sari, E., Fadli, A., and Amri, A.: The 3 hours-hydrothermal synthesis of high surface area superparamagnetic Fe3O4 core–shell nanoparticles. JUSAMI 19, 9 (2017).CrossRefGoogle Scholar
Sulaiman, G.M., Tawfeeq, A.T., and Naji, A.S.: Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. Artif. Cells, Nanomed., Biotechnol. 46, 1215 (2018).CrossRefGoogle ScholarPubMed
Wu, W., He, Q., and Jiang, C.: Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397451 (2008).CrossRefGoogle ScholarPubMed
Zhu, N., Ji, H., Yu, P., Niu, J., Farooq, M.U., Akram, M.W., Udego, I.O., Li, H., and Niu, X.: Surface modification of magnetic iron oxide nanoparticles. Nanomaterials 8, 810 (2018).CrossRefGoogle ScholarPubMed
Pušnik, K., Goršak, T., Drofenik, M., and Makovec, D.: Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid. J. Magn. Magn. Mater. 413, 65 (2016).CrossRefGoogle Scholar
Byoun, W., Jang, M., and Yoo, H.: Fabrication of highly fluorescent multiple Fe3O4 nanoparticles core–silica shell nanoparticles. J. Nanopart. Res. 21, 1 (2019).CrossRefGoogle Scholar
Suh, S.K., Yuet, K., Hwang, K., Bong, K.W., Doyle, P.S., and Hatton, T.A.: Synthesis of nonspherical superparamagnetic particles: In situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography. J. Am. Chem. Soc. 134, 7337 (2012).CrossRefGoogle ScholarPubMed
Tamer, U., Gündoğdu, Y., Boyacıi, H., and Pekmez, K.: Synthesis of magnetic core–shell Fe3O4–Au nanoparticle for biomolecule immobilization and detection. J. Nanopart. Res. 12, 1187 (2010).CrossRefGoogle Scholar
Businova, P., Chomoucka, J., Prasek, J., Hrdy, R., Drbohlavova, J., Sedlacek, P., and Hubalek, J.: Polymer-coated iron oxide magnetic nanoparticles-preparation and characterization. Nano Convergence 4, 565 (2011).Google Scholar
Mahdavi, M., Ahmad, M.B., Haron, M.J., Namvar, F., Nadi, B., Rahman, M.Z.A., and Amin, J.: Synthesis, surface modification and characterization of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18, 7533 (2013).CrossRefGoogle Scholar
Wahab, A., Imran, M., Ikram, M., Naz, M., Aqeel, M., Rafiq, A., Majeed, H., and Ali, S.: Dye degradation property of cobalt and manganese doped iron oxide nanoparticles. Appl. Nanosci. 1, 1 (2019).Google Scholar
Liu, Z., Wang, H., Lu, Q., Du, G., Peng, L., Du, Y., Zhang, S., and Yao, K.: Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles. J. Magn. Magn. Mater. 283, 258 (2004).CrossRefGoogle Scholar
Aghazadeh, M. and Karimzadeh, I.: Preparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications. Int. J. Inorg. Mater. 5, 95 (2016).Google Scholar
Alp, E. and Aydogan, N.: A comparative study: Synthesis of superparamagnetic iron oxide nanoparticles in air and N2 atmosphere. Colloids Surf., A 510, 205 (2016).CrossRefGoogle Scholar
Li, S., Zhang, T., Tang, R., Qiu, H., Wang, C., and Zhou, Z.: Solvothermal synthesis and characterization of monodisperse superparamagnetic iron oxide nanoparticles. J. Magn. Magn. Mater. 379, 226 (2015).CrossRefGoogle Scholar
Walton, R.: Cheminform abstract: Solvothermal synthesis of cerium oxides. ChemInform 33, 126 (2010).CrossRefGoogle Scholar
Tian, Y., Yu, B., Li, X., and Li, K.: Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometer as potential MRI contrast agents. J. Mater. Chem. 21, 2476 (2011).CrossRefGoogle Scholar
Du, Q., Cai, H., Zhu, J., and Geng, T.: Preparation of Fe2O3 micro/nanomaterials by hydrothermal method and its magnetic properties. Bull. Korean Chem. Soc. 34, 3287 (2015).Google Scholar
Torres-Gómez, N., Nava, O., Argueta-Figueroa, L., García-Contreras, R., Baeza-Barrera, A., and Vilchis-Nestor, A.R.: Shape tuning of magnetite nanoparticles obtained by hydrothermal synthesis: Effect of temperature. J. Nanomater. 2019, 1 (2019).CrossRefGoogle Scholar
Hyeon, T., Lee, S., Park, J., Chung, Y., and Na, H.: Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798 (2001).CrossRefGoogle ScholarPubMed
Wu, W., Wu, Z., Yu, T., Jiang, C., and Kim, W.S.: Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16, 23501 (2015).CrossRefGoogle ScholarPubMed
Chen, Z.: Size and shape controllable synthesis of monodisperse iron oxide nanoparticles by thermal decomposition of iron oleate complex. Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 42, 1040 (2012).CrossRefGoogle Scholar
Hufschmid, R. and Arami, H.: Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7, 11142 (2015).CrossRefGoogle ScholarPubMed
Fu, C. and Ravindra, N.: Magnetic iron oxide nanoparticles: Synthesis and applications. Bioinspired, Biomimetic Nanobiomater. 1, 229 (2015).CrossRefGoogle Scholar
Kandasamy, G. and Maity, D.: Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm. 496, 191 (2015).CrossRefGoogle ScholarPubMed
Hu, P., Chang, T., Chen, W.J., Deng, J., Li, S.L., Zuo, Y.G., Kang, L., Yang, F., Hostetter, M., and Volinsky, A.A.: Temperature effects on magnetic properties of Fe3O4 nanoparticles synthesized by the sol–gel explosion-assisted method. J. Alloys Compd. 773, 605 (2019).CrossRefGoogle Scholar
Richard, S., Eder, V., Caputo, G., Journe, C., Ou, P., Bolley, J., Louedec, L., Guenin, E., Motte, L., Pinna, N., and Lalatonne, Y.: USPIO size control through microwave nonaqueous sol–gel method for neoangiogenesis T2 MRI contrast agent. Nanomedicine 11, 2769 (2016).Google ScholarPubMed
Masthoff, I., Kraken, M., Menzel, D., Litterst, F., and Garnweitner, G.: Study of the growth of hydrophilic iron oxide nanoparticles obtained via the non-aqueous sol–gel method. J. Sol–Gel Sci. Technol. 77, 553 (2016).CrossRefGoogle Scholar
Lu, Y., Yin, Y., Mayers, B.T., and Xia, Y.: Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol–gel approach. Nano Lett. 2, 183 (2002).CrossRefGoogle Scholar
Karimzadeh, I., Aghazadeh, M., Doroudi, T., Ganjali, M., and Kolivand, P.: Superparamagnetic iron oxide (Fe3O4) nanoparticles coated with PEG/PEI for biomedical applications: A facile and scalable preparation route based on the cathodic electrochemical deposition (CED) method. Adv. Phys. Chem. 5, 95 (2016).Google Scholar
Karimzadeh, I., Aghazadeh, M., Dalvand, A., Doroudi, T., Kolivand, P.H., Ganjali, M.R., and Norouzi, P.: Effective electrosynthesis and in situ surface coating of Fe3O4 nanoparticles with polyvinyl alcohol for biomedical applications. Mater. Res. Innovations 23, 1 (2019).Google Scholar
Starowicz, M., Starowicz, P., Zukrowski, J., Przewoznik, J., Lemanski, A., Kapusta, C., and Banas, J.: Electrochemical synthesis of magnetic iron oxide nanoparticles with controlled size. J. Nanopart. Res. 13, 7167 (2011).CrossRefGoogle ScholarPubMed
Ismail, R.A., Sulaiman, G.M., and Abdulrahman, S.A.: Preparation of iron oxide nanoparticles by laser ablation in DMF under of external magnetic field. Int. J. Mod. Phys. B 30, 1650094 (2016).CrossRefGoogle Scholar
Ismail, R.A., Sulaiman, G.M., Abdulrahman, S.A., and Marzoog, T.R.: Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater. Sci. Eng., C 53, 286 (2015).CrossRefGoogle ScholarPubMed
Fazio, E., Santoro, M., Lentini, G., Franco, D., Guglielmino, S.P.P., and Neri, F.: Iron oxide nanoparticles prepared by laser ablation: Synthesis, structural properties and antimicrobial activity. Colloids Surf., A 490, 98 (2016).CrossRefGoogle Scholar
Park, H., Mcconnell, J., Boddohi, S., Kipper, M., and Johnson, P.: Synthesis and characterization of enzyme-magnetic nanoparticle complexes: Effect of size on activity and recovery. Colloids Surf., B 83, 198 (2011).CrossRefGoogle ScholarPubMed
Hui, C., Shen, C., Tian, J., Bao, L., Ding, H., Tian, Y., Shi, X., and Gao, H.: Core–shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale 3, 701 (2011).CrossRefGoogle ScholarPubMed
Sonmez, M., Georgescu, M., Alexandrescu, L., Gurau, D., Ficai, A., Ficai, D., and Andronescu, E.: Synthesis and applications of Fe3O4/SiO2 core–shell materials. Curr. Pharm. Des. 21, 5324 (2015).CrossRefGoogle ScholarPubMed
Fan, Q., Guan, Y., Zhang, Z., Xu, G., Yang, Y., and Guo, C.: A new method of synthesis well-dispersion and dense Fe3O4@SiO2 magnetic nanoparticles for DNA extraction. Chem. Phys. Lett. 715, 7 (2019).CrossRefGoogle Scholar
Shahabadi, N., Khorshidi, A., Zhaleh, H., and Kashanian, S.: Synthesis, characterization, cytotoxicity and DNA binding studies of Fe3O4@SiO2 nanoparticles coated by an antiviral drug lamivudine. J. Drug Delivery Sci. Technol. 46, 55 (2018).CrossRefGoogle Scholar
Stöber, W., Fink, A., and Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
Kulkarni, S.A., Sawadh, P.S., and Palei, P.K.: Synthesis and characterization of superparamagnetic Fe3O4@SiO2 nanoparticles. Adv. Mater. Res. 58, 46 (2014).Google Scholar
Mitra, H., Shahtahmassebi, N., Roknabadi, M., and Ghows, N.: Synthesis and study of structural and magnetic properties of superparamagnetic Fe3O4@SiO2 core/shell nanocomposite for biomedical applications. J. Nanomed. 1, 71 (2013).Google Scholar
Puscasu, E., Sacarescu, L., Lupu, N., Grigoras, M., Oanca, G., Balasoiu, M., and Creanga, D.: Iron oxide–silica nanocomposites yielded by chemical route and sol–gel method. J. Sol. Gel Sci. Technol. 3, 1 (2016).Google Scholar
Li, F., Yu, Z., Zhao, L., and Xue, T.: Synthesis and application of homogeneous Fe3O4 core/Au shell nanoparticles with strong SERS effect. RSC Adv. 6, 10352 (2016).CrossRefGoogle Scholar
Lee, M.H., Leu, C.C., Lin, C.C., Tseng, Y.F., Lin, H.Y., and Yang, C.N.: Gold-decorated magnetic nanoparticles modified with hairpin-shaped DNA for fluorometric discrimination of single-base mismatch DNA. Microchim. Acta 186, 80 (2019).CrossRefGoogle ScholarPubMed
Miao, P., Tang, Y., and Wang, L.: DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions. ACS Appl. Mater. Interfaces 9, 3940 (2017).CrossRefGoogle ScholarPubMed
Zhao, J., Tu, K., Liu, Y., Qin, Y., Wang, X., Qi, L., and Shi, D.: Photo-controlled aptamers delivery by dual surface gold-magnetic nanoparticles for targeted cancer therapy. Mater. Sci. Eng., C 80, 88 (2017).CrossRefGoogle ScholarPubMed
Chen, S., Liu, N., Yanyun, J., Xiong, C., and Dong, L.: In situ synthesis and antibacterial application of Fe3O4@Ag nanoparticles. J. Func. Mater. 48, 03097 (2017).Google Scholar
Shao, B., Ma, X., Zhao, S., Lv, Y., Hun, X., Wang, H., and Wang, Z.: Nanogapped Au(core)@Au–Ag(shell) structures coupled with Fe3O4 magnetic nanoparticles for the detection of Ochratoxin A. Anal. Chim. Acta 18, 53 (2018).Google Scholar
Stefan, M., Leostean, C., Pana, O., Soran, M., Suciu, R., Gautron, E., and Chauvet, O.: Synthesis and characterization of Fe3O4@ZnS and Fe3O4@Au@ZnS core–shell nanoparticles. Appl. Surf. Sci. 288, 180 (2014).CrossRefGoogle Scholar
Portet, D., Denizot, B., Rump, E., Lejeune, J., and Jallet, P.: Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents. J. Colloid Interface Sci. 238, 37 (2001).CrossRefGoogle ScholarPubMed
Soares, P., Laia, C., Carvalho, A., Pereira, L., Coutinho, J., Ferreira, I., Novo, C., and Borges, J.: Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications. Appl. Surf. Sci. 383, 240 (2016).CrossRefGoogle Scholar
Zhang, L., He, R., and Gu, H.: Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 253, 2611 (2006).CrossRefGoogle Scholar
Andreas, K., Georgieva, R., Ladwig, M., Mueller, S., Notter, M., Sittinger, M., and Ringe, J.: Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking. Biomaterials 33, 4515 (2012).CrossRefGoogle ScholarPubMed
Saraswathy, A., Nazeer, S., Jeevan, M., Nimi, N., Arumugam, S., Harikrishnan, V., Varma, P., and Jayasreea, R.: Citrate coated iron oxide nanoparticles with enhanced relaxivity for in vivo magnetic resonance imaging of liver fibrosis. Colloids Surf., B 117, 216 (2014).CrossRefGoogle ScholarPubMed
Ardelean, I., Stoencea, L., Ficai, D., Ficai, A., Trusca, R., Vasile, B., Nechifor, G., and Andronescu, E.: Development of stabilized magnetite nanoparticles for medical applications. J. Nanomater. 2017, 1 (2017).CrossRefGoogle Scholar
Yamaura, M., Camilo, R., Sampaio, L., Macedo, M., Nakamura, M., and Toma, H.: Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 279, 210 (2008).CrossRefGoogle Scholar
Jia, Y., Gao, Z., and Cui, J.: Preparation and characterization of two different amino-modified iron oxide magnetic nanoparticles and determination of the amount of amino on nanoparticle surface. J. Prev. Med. Chin. PLA 35, 1 (2017).Google Scholar
Teo, P., Wang, X., Chen, B., Zhang, H., Yang, X., Huang, Y., and Tang, J.: Complex of TNF-α and modified Fe3O4 nanoparticles suppresses tumor growth by magnetic induction hyperthermia. Cancer Biother.Radiopharm. 32, 379 (2017).CrossRefGoogle ScholarPubMed
Khosroshahi, M. and Asemani, M.: Synthesis and characterization of hydrogel-based ferroscaffold containing fluorescein isothiocyanate (FITC) surface modified magnetite nanoparticles as optical marker. Adv. Nano Bio. M&D 1, 146 (2017).Google Scholar
Rowley, J. and Abu-Zahra, N.H.: Synthesis and characterization of polyethersulfone membranes impregnated with (3-aminopropyltriethoxysilane) APTES-Fe3O4 nanoparticles for As(V) removal from water. J. Environ. Chem. Eng. 7, 102875 (2019).CrossRefGoogle Scholar
Sun, X. and Li, Y.: Functional modification and preparation of superparamagnetic Fe3O4. Adv. Mater. Res. 743, 183 (2013).CrossRefGoogle Scholar
Ahangaran, F., Hassanzadeh, A., and Nouri, S.: Surface modification of Fe3O4@SiO2 microsphere by silane coupling agent. Int. Nano Lett. 3, 23 (2013).CrossRefGoogle Scholar
Chen, T., Zhao, Y., Zhao, L., Du, J., and Xie, C.: Effect of modified Fe3O4 nanoparticles on the preparation of PMMA/Fe3O4 microspheres via suspension polymerization. IOP Conf. Ser.: Mater. Sci. Eng. 108, 1 (2017).Google Scholar
Xiong, Z., Li, S., and Xia, Y.: Highly stable water-soluble magnetic nanoparticles synthesized through combined co-precipitation, surface-modification, and decomposition of a hybrid hydrogel. New J. Chem. 40, 9951 (2016).CrossRefGoogle Scholar
Cui, S., Shen, X., and Lin, B.: Surface organic modification of Fe3O4 nanoparticles by silane-coupling agents. Rare Met. 25, 426 (2006).Google Scholar
Gu, Y., Hou, C., Gao, P., and Deng, X.: Surface modification of hydrophilic Fe3O4 nanoparticles. Hebei Chem. Ind. 36, 1 (2013).Google Scholar
Radwan, M.A., Rashad, M.A., Sadek, M.A., and Elazab, H.A.: Synthesis, characterization and selected application of chitosan-coated magnetic iron oxide nanoparticles. J. Chem. Technol. Metall. 81, 303 (2019).Google Scholar
Shahidi, F. and Abuzaytoun, R.: Chitin, chitosan, and co-products: Chemistry, production, applications, and health effects. Adv. Food Nutr. Res. 49, 93 (2005).CrossRefGoogle ScholarPubMed
Ziegler-Borowska, M., Chełminiak, D., and Kaczmarek, H.: Thermal stability of magnetic nanoparticles coated by blends of modified chitosan and poly (quaternary ammonium) salt. J. Therm. Anal. Calorim. 119, 499 (2015).CrossRefGoogle Scholar
Vieira, A.P.M., Arias, L.S., Neto, F.N.S., Kubo, A.M., Lima, B.H.R., Camargo, E.R., Pessan, J.P., Delbem, A.C.B., and Monteiro, D.R.: Antibiofilm effect of chlorhexidine-carrier nanosystem based on iron oxide magnetic nanoparticles and chitosan. Colloids Surf., B 174, 224 (2019).CrossRefGoogle ScholarPubMed
Safee, N., Abdullah, M., and Othman, M.: Carboxymethyl chitosan-Fe3O4 nanoparticles: Synthesis and characterization. Malaysian J. Anal. Sci. 14, 63 (2010).Google Scholar
Song, X., Luo, X., Zhang, Q., Zhu, A., Ji, L., and Yan, C.: Preparation and characterization of biofunctionalized chitosan/Fe3O4 magnetic nanoparticles for application in liver magnetic resonance imaging. J. Magn. Magn. Mater. 388, 116 (2015).CrossRefGoogle Scholar
Boustani, K., Shayesteh, S., Salouti, M., Jafari, A., and Shal, A.: Synthesis, characterisation and potential biomedical applications of magnetic core–shell structures: Carbon-, dextran-, SiO2- and ZnO-coated Fe3O4 nanoparticles. New J. Chem. 12, 78 (2018).Google Scholar
Unterweǵer, H., László, D., Matuszak, J., Janko, C., Poettler, M., Jordan, J., Bäuerle, T., Szebeni, J., Fey, T., Boccaccini, A.R., Alexiou, C., and Cicha, I.: Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: Evaluation of size-dependent imaging properties, storage stability and safety. Int. J. Nanomed. 13, 1899 (2018).CrossRefGoogle ScholarPubMed
Zhang, Q., Liu, Q., Du, M., Vermorken, A., Cui, Y., Zhang, L., Guo, L., Ma, L., and Chen, M.: Cetuximab and Doxorubicin loaded dextran-coated Fe3O4 magnetic nanoparticles as novel targeted nanocarriers for non-small cell lung cancer. J. Magn. Magn. Mater. 481, 122 (2019).CrossRefGoogle Scholar
Qin, H., Xu, D., and Yang, S.: Dextran-coated Fe3O4 magnetic nanoparticles as a contrast agent in thermoacoustic tomography for hepatocellular carcinoma detection. J. Phys.: Conf. Ser. 277, 1 (2011).Google Scholar
Zhao, X., Cui, H., Chen, W., Wang, Y., Cui, B., Sun, C., Meng, Z., and Liu, G.: Morphology, structure and function characterization of PEI modified magnetic nanoparticles gene delivery system. PLoS One 9, 98919 (2014).CrossRefGoogle ScholarPubMed
Karimzadeh, I., Aghazadeh, M., Ganjali, M., Doroudi, T., and Kolivand, P.: Preparation and characterization of iron oxide (Fe3O4) nanoparticles coated with polyvinylpyrrolidone/polyethylenimine through a facile one-pot deposition route. J. Magn. Magn. Mater. 433, 148 (2017).CrossRefGoogle Scholar
Steitz, B., Hofmann, H., Kamau, S., Hassa, P., Hottiger, M., Rechenberg, B., Amtenbrink, M., and Fink, A.: Characterization of PEI-coated superparamagnetic iron oxide nanoparticles for transfection: Size distribution, colloidal properties and DNA interaction. J. Magn. Magn. Mater. 311, 300 (2007).CrossRefGoogle Scholar
Arsianti, M., Lim, M., Marquis, C.P., and Amal, R.: Polyethylenimine based magnetic iron-oxide vector: The effect of vector component assembly on cellular entry mechanism, intracellular localization, and cellular viability. Biomacromolecules 11, 2521 (2010).CrossRefGoogle ScholarPubMed
Topel, S., Topel, Ö., Bostancıoğlu, R., and Koparal, A.: Synthesis and characterization of Bodipy functionalized magnetic iron oxide nanoparticles for potential bioimaging applications. Colloids Surf., B 128, 245 (2015).CrossRefGoogle ScholarPubMed
Tutuianu, R., Popescu, L., Preda, M., Rosca, A., Piticescu, R., and Burlacu, A.: Evaluation of the ability of nanostructured PEI-coated iron oxide nanoparticles to incorporate cisplatin during synthesis. Nanomaterials 7, 314 (2017).CrossRefGoogle ScholarPubMed
, T., Qi, D., Zhang, D., Zhang, C., and Zhao, H.: One-step synthesis of versatile magnetic nanoparticles for efficiently removing emulsified oil droplets and cationic and anionic heavy metal ions from the aqueous environment. Environ. Sci. Pollut. Res. 26, 6153 (2019).CrossRefGoogle ScholarPubMed
Yang, J., Ping, Z., Yang, L., Cao, J., Sun, Y., Han, D., Yang, S., Wang, Z., Chen, G., Wang, B., and Kong, X.: A comprehensive study on the synthesis and paramagnetic properties of PEG-coated Fe3O4 nanoparticles. Appl. Surf. Sci. 303, 425 (2014).CrossRefGoogle Scholar
Patsula, V., Tulinska, J., Trachtová, Š., Kuricova, M., Liskova, A., Španová, A., Ciampor, F., Vavra, I., Rittich, B., Ursinyova, M., Dusinska, M., Ilavska, S., Horvathova, M., Masanova, V., Uhnakova, I., and Horák, D.: Toxicity evaluation of monodisperse PEGylated magnetic nanoparticles for nanomedicine. Nanotoxicology 1, 1 (2019).CrossRefGoogle Scholar
Zwart, S., Morgan, J., and Smith, S.: Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the international space station. Am. J. Clin. Nutr. 98, 217 (2013).CrossRefGoogle ScholarPubMed
Mukhopadhyay, A., Joshi, N., Chattopadhyay, K., and De, G.: A facile synthesis of PEG-coated magnetite (Fe3O4) nanoparticles and their prevention of the reduction of cytochrome C. ACS Appl. Mater. Interfaces 4, 142 (2012).CrossRefGoogle ScholarPubMed
Blyakhman, F.A., Buznikov, N.A., Sklyar, T.F., Safronov, A.P., Golubeva, E.V., Svalov, A.V., Sokolov, S.Y., Melnikov, G.Y., Orue, I., and Kurlyandskaya, G.V.: Mechanical, electrical and magnetic properties of ferrogels with embedded iron oxide nanoparticles obtained by laser target evaporation: Focus on multifunctional biosensor applications. Sensors 18, 872 (2018).CrossRefGoogle ScholarPubMed
Dolci, M., Bryche, J.F., Leuvrey, C., Zafeiratos, S., Gree, S., Begin-Colin, S., Barbillon, G., and Pichon, B.P.: Robust clicked assembly based on iron oxide nanoparticles for a new type of SPR biosensor. J. Mater. Chem. 6, 9102 (2018).Google Scholar
Shah, S.T., Yehye, W.A., Saad, O., Simarani, K., Chowdhury, Z.Z., Alhadi, A.A., and Al-Ani, L.A.: Nanoparticles with gallic acid as potential antioxidant and antimicrobial agents. Nanomaterials 7, 306 (2017).CrossRefGoogle ScholarPubMed
Lu, W., Ling, M., Jia, M., Huang, P., Li, C., and Yan, B.: Facile synthesis and characterization of polyethylenimine-coated Fe3O4 superparamagnetic nanoparticles for cancer cell separation. Mol. Med. Rep. 9, 1080 (2014).CrossRefGoogle ScholarPubMed
Xu, H., Aguilar, Z.P., Yang, L., Kuang, M., Duan, H., Xiong, Y., Wei, H., and Wang, A.: Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials 32, 9758 (2011).CrossRefGoogle ScholarPubMed
Zengin, A., Yildirim, E., Tamer, U., and Caykara, T.: Molecularly imprinted superparamagnetic iron oxide nanoparticles for rapid enrichment and separation of cholesterol. Analyst 138, 7238 (2013).CrossRefGoogle ScholarPubMed
Yang, Y., Xu, Z., Jiang, J., Gao, Y., and Gu, W.: Poly(imidazole/DMAEA) phosphazene/DNA self-assembled nanoparticles for gene delivery: Synthesis and in vitro transfection. J. Control. Release 127, 273 (2008).CrossRefGoogle ScholarPubMed
Lu, Y.: Progress of magnetic nanoparticles as gene vector. Biotechnol. Lett. 24, 736 (2013).Google Scholar
Wang, Y., Xu, C., and Ow, H.: Commercial nanoparticles for stem cell labeling and tracking. Theranostics 3, 544 (2013).CrossRefGoogle ScholarPubMed
Riahi, R., Tamayol, A., Shaegh, S., Ghaemmaghami, A., Dokmeci, M., and Khademhosseini, A.: Microfluidics for advanced drug delivery systems. Curr. Opin. Chem. Eng. 7, 101 (2015).CrossRefGoogle Scholar
Laurent, S., Forge, D., Port, M., Roch, A., Robic, R., Elst, L., and Robic, N.: Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 39, 2064 (2008).CrossRefGoogle Scholar
Chen, B., Dai, W., He, B., Zhang, H., Wang, X., Wang, Y., and Zhang, Q.: Current multistage drug delivery systems based on the tumor microenvironment. Theranostics 7, 538 (2017).CrossRefGoogle ScholarPubMed
Kader, R.A., Rose, L.C., Suhaimi, H., and Manickam, M.S.: Synthesis and toxicity test of magnetic nanoparticle via biocompatible microemulsion system as template for application in targeted drug delivery. AIP Conf. Proc. 1885, 020136 (2017).CrossRefGoogle Scholar
Fan, C., Gao, W., Chen, Z., Fan, H., and Li, M.: Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles. Int. J. Pharm. 404, 180 (2010).CrossRefGoogle ScholarPubMed
Jang, B., Park, S., Kang, S., Kim, J., and Kim, S.: Gold nanorods for target selective SPECT/CT imaging and photothermal therapy in vivo. Quant. Imag. Med. Surg. 2, 1 (2012).Google ScholarPubMed
Thomas, L., Dekker, L., and Kallumadil, M.: Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia. J. Mater. Chem. 19, 6529 (2009).CrossRefGoogle Scholar
Moroz, P., Jones, S., and Gray, B.: Status of hyperthermia in the treatment of advanced liver cancer. J. Surg. Oncol. 77, 259 (2001).CrossRefGoogle ScholarPubMed
Kita, E., Oda, T., Kayano, T., Sato, S., Minagawa, M., Yanagihara, H., Kishimoto, M., Mitsumata, C., Hashimoto, S., Yamada, K., and Ohkohchi, N.: Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy. J. Phys. D: Appl. Phys. 43, 2462 (2010).CrossRefGoogle Scholar
Liu, T., Chang, G., Cao, R., and Meng, L.: Applications of superparamagnetic Fe3O4 nanoparticles in magnetic resonance imaging. Prog. Chem. 27, 601 (2015).Google Scholar
Chen, Y., Tao, J., Xiong, F., Zhu, J., Zhang, Y., Ding, Y., and Ge, L.: Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug Dev. Ind. Pharm. 36, 1235 (2010).Google Scholar