Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T06:55:31.107Z Has data issue: false hasContentIssue false

Synthesis, structural, and morphological characterization of ceramics in the system Bi2O3–TiO2–CuO

Published online by Cambridge University Press:  31 January 2011

L. Pérez-Arrieta
Affiliation:
Instituto de Física-Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla, Pue. 72570, Mexico
M. E. Mendoza-Alvarez
Affiliation:
Instituto de Física-Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla, Pue. 72570, Mexico
R. Silva-González
Affiliation:
Instituto de Física-Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla, Pue. 72570, Mexico
O. Alvarez-Fregoso
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autóonoma de Mexico, Apdo. Postal 70–360, D.F. 04510, Mexico
C. Tabares-Muñoz
Affiliation:
Instituto de Física-Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla, Pue. 72570, Mexico
Get access

Abstract

This paper reports the formation of a solid solution in the system Bi2O3–TiO2–CuO. This solid solution seems to be isostructural with Bi4Ti3O12, according with the x-ray powder diffraction patterns. Microstructural studies done using scanning electron microscopy show the typical elongated Bi4Ti3O12 grain morphology only in samples with 2 : 2 : y molar ratios of the Bi2O3 : TiO2 : CuO oxides (y = 1, 2, or 3).

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Takenaka, T. and Sakata, K., J. Appl. Phys. 55, 1092 (1984).CrossRefGoogle Scholar
2.Frit, B. and Mercurio, J.P., J. Alloys Comp. 188, 27 (1992).CrossRefGoogle Scholar
3.Castro, A., Millán, P., Martínez-Lope, M.J., and Torrance, J. B., Solid State Ionics 63–65, 897 (1993).CrossRefGoogle Scholar
4.Millan, P., Castro, A., and Torrance, J. B., Mater. Res. Bull. 28, 117 (1993).Google Scholar
5.Rae, A.D., Thompson, J. G., Withers, R. L., and Willis, A.C., Acta Crystallogr. B46, 474 (1990).Google Scholar
6.Armstrong, R.A. and Newnham, R.E., Mater. Res. Bull. 7, 1025 (1972).Google Scholar
7.Ikegami, S. and Ueda, I., Jpn. J. Appl. Phys. 13, 1572 (1974).CrossRefGoogle Scholar
8.Withers, R.L., Thompson, J. G., and Rae, A.D., J. Solid State Chem. 94, 404 (1991).CrossRefGoogle Scholar
9.Mendoza-Alvarez, M.E., Tabares-Muñoz, C., Alvarez-Fregoso, O., and Mendoza-Alvarez, J. G., Appl. Phys. Lett. 64, 1433 (1994).CrossRefGoogle Scholar
10.Shannon, R.D., Acta Crystallogr. A32, 751 (1976).CrossRefGoogle Scholar
11.Wells, A.F., Structural Inorganic Chemistry (Clarendon Press, Oxford, 1984), p. 1117.Google Scholar
12.Takenaka, T. and Sakata, K., Jpn. J. Appl. Phys. 19, 31 (1980).CrossRefGoogle Scholar
13.Shoji, K. and Uemara, Y., Jpn. J. Appl. Phys. 22 (Suppl. 22–2), 50 (1983).CrossRefGoogle Scholar
14.Brooks, H.S. and Damjanovic, D., Third Euroceramics 2, 199 (1993).Google Scholar
15.Ueda, I., Jpn. J. Appl. Phys. 11, 450 (1972).CrossRefGoogle Scholar
16.Surface and Near-Surface Chemistry of Oxide Materials edited by Nowotny, J. and Dufour, L. E. (Elsevier, Amsterdam, 1988), p. 449.Google Scholar
17.Watanbe, H., Kimura, T., and Yamaguchi, T., J. Am. Ceram. Soc. 74, 139 (1991).Google Scholar