Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T15:50:32.220Z Has data issue: false hasContentIssue false

Synthesis of tungsten oxide comblike nanostructures

Published online by Cambridge University Press:  31 January 2011

Kunquan Hong
Affiliation:
Physics Department and the HKU-CAS Joint Laboratory on New Material, The University of Hong Kong, Hong Kong, China
Maohai Xie*
Affiliation:
Physics Department and the HKU-CAS Joint Laboratory on New Material, The University of Hong Kong, Hong Kong, China
Rong Hu
Affiliation:
Physics Department and the HKU-CAS Joint Laboratory on New Material, The University of Hong Kong, Hong Kong, China
Huasheng Wu
Affiliation:
Physics Department and the HKU-CAS Joint Laboratory on New Material, The University of Hong Kong, Hong Kong, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Tungsten oxide comblike nanostructures were synthesized using a two-step thermal evaporation method. The first step involving high reactor pressure and temperature was to synthesize the cores of the comb structures, upon which the teeth of the comb were grown in the second step using low operation pressures and temperatures. The teeth of the comb structure are well aligned and vertical to the side surfaces of the cores. The effects of growth parameters were examined, and the growth mechanism was investigated.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zhang, B., Liu, J.D., Guan, S.K., Wan, Y.Z., Zhang, Y.Z., Chen, R.F.: Synthesis of single-crystalline potassium-doped tungsten oxide nanosheets as high-sensitive gas sensors. J. Alloys Compd. 439, 55 2007Google Scholar
2Pan, Z.W., Dai, Z.R., Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291, 1947 2001CrossRefGoogle ScholarPubMed
3Wen, X.G., Wang, S.H., Ding, Y., Wang, Z.L., Yang, S.H.: Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires. J. Phys. Chem. B 109, 215 2005Google Scholar
4Wang, S.L., He, Y.H., Huang, B.Y., Zou, J., Liu, C.T., Liaw, P.K.: Formation and growth mechanism of tungsten oxide microtubules. Chem. Phys. Lett. 427, 350 2006Google Scholar
5Li, Y.B., Bando, Y.S., Golberg, D.: Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv. Mater. 15, 1294 2003Google Scholar
6He, Y.H., Wang, S.L., Huang, B.Y., Liu, C.T., Liaw, P.K.: Novel tungsten oxide microneedles with nanosized tips. Appl. Phys. Lett. 88, 223107 2006CrossRefGoogle Scholar
7Hong, K.Q., Yiu, W.C., Wu, H.S., Gao, J., Xie, M.H.: A simple method for growing high quantity tungsten-oxide nanoribbons under moist conditions. Nanotechnology 16, 1608 2005CrossRefGoogle Scholar
8Kong, X.Y., Wang, Z.L.: Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 3, 1625 2003CrossRefGoogle Scholar
9Kong, X.Y., Wang, Z.L.: Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes, nanosprings, and nanospirals. Appl. Phys. Lett. 84, 975 2004CrossRefGoogle Scholar
10Bierman, M.J., Lau, Y.K.A., Kvit, A.V., Schmitt, A.L., Jin, S.: Dislocation-driven nanowire growth and Eshelby twist. Science 320, 1060 2008CrossRefGoogle ScholarPubMed
11Zhu, Y.Q., Hu, W.B., Hsu, W.K., Terrones, M., Grobert, N., Hare, J.P., Kroto, H.W., Walton, D.R.M., Terrones, H.: Tungsten oxide tree-like structures. Chem. Phys. Lett. 309, 327 1999CrossRefGoogle Scholar
12Baek, Y., Song, Y., Yong, K.: A novel heteronanostructure system: Hierarchical W nanothorn arrays onWO3 nanowhiskers. Adv. Mater. 18, 3105 2006CrossRefGoogle Scholar
13Yan, H.Q., He, R.R., Johnson, J., Law, M., Saykally, R.J., Yang, P.D.: Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 125, 4728 2003CrossRefGoogle ScholarPubMed
14Solis, J.L., Saukko, S., Kish, L., Granqvist, C.G., Lantto, V.: Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Films 391, 255 2001Google Scholar
15Bohnke, O., Rezarzi, M., Vuillemin, B., Bohnke, C., Gillet, P.A., Rousselot, C.: In situ optical and electrochemical characterization of electrochromic phenomena into tungsten trioxide thin-films. Sol. Energy Mater. Sol. Cells 25, 361 1992Google Scholar
16Santato, C., Odziemkowski, M., Ulmann, M., Augustynski, J.: Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications. J. Am. Chem. Soc. 123, 10639 2001CrossRefGoogle ScholarPubMed
17Liu, Z.W., Bando, Y.S., Tang, C.C.: Synthesis of tungsten oxide nanowires. Chem. Phys. Lett. 372, 179 2003CrossRefGoogle Scholar
18Hong, K.Q., Xie, M.H., Wu, H.S.: Tungsten oxide nanowires synthesized by a catalyst-free method at low temperature. Nanotechnology 17, 4830 2006CrossRefGoogle Scholar
19Liao, C.C., Chen, F.R., Kai, J.J.: WO3−x nanowires based electrochromic devices. Sol. Energy Mater. Sol. Cells 90, 1147 2006CrossRefGoogle Scholar
20Feng, M., Pan, A.L., Zhang, H.R., Li, Z.A., Liu, F., Liu, H.W., Shi, D.X., Zou, B.S., Gao, H.J.: Strong photoluminescence of nanostructured crystalline tungsten oxide thin films. Appl. Phys. Lett. 86, 141901 2005Google Scholar
21Hong, K.Q., Xie, M.H., Hu, R., Wu, H.S.: Synthesizing tungsten oxide nanowires by a thermal evaporation method. Appl. Phys. Lett. 90, 173121 2007CrossRefGoogle Scholar
22JCPDS No. 71-2450, with β = 115.20°a = 1.8334 nm, b = 0.3786 nm, c = 1.4044 nm. International Center for Diffraction Data Newton Square, PA 1981Google Scholar
23Hong, K.Q., Xie, M.H., Hu, R., Wu, H.S.: Diameter control of tungsten oxide nanowires as grown by thermal evaporation. Nanotechnology 19, 085604 2008Google Scholar