Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T03:25:22.721Z Has data issue: false hasContentIssue false

Synthesis of silver-gold alloy nanoparticles by a phase-transfer system

Published online by Cambridge University Press:  01 January 2006

R.J. Chimentão
Affiliation:
Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
I. Cota
Affiliation:
Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
A. Dafinov
Affiliation:
Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
F. Medina*
Affiliation:
Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
J.E. Sueiras
Affiliation:
Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007 Tarragona, Spain
J.L. Gómez de la Fuente
Affiliation:
Instituto de Catálisis y Petroleoquímica, CSIC, Cantoblanco, 28049 Madrid, Spain
J.L.G. Fierro
Affiliation:
Instituto de Catálisis y Petroleoquímica, CSIC, Cantoblanco, 28049 Madrid, Spain
Y. Cesteros
Affiliation:
Departament de Química Inorgànica, Universitat Rovira i Virgili, 43005 Tarragona, Spain
P. Salagre
Affiliation:
Departament de Química Inorgànica, Universitat Rovira i Virgili, 43005 Tarragona, Spain
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We have studied the preparation of silver-gold alloy nanoparticles based on the phase transfer of metal precursors from aqueous phase to organic solution by a fatty amine at room temperature. Silver-gold nanoparticles were synthesized with different molar ratios (2:1, 1:1, 1:2). Ultraviolet-visible absorption spectra suggested the formation of alloy phases. The elemental Ag:Au ratios in the bimetallic nanoparticles determined by energy dispersive x-ray analysis (EDX) were consistent with the Ag:Au molar ratios used in the feeding solution. Transmission electron microscopy (TEM) revealed the formation of a uniform size distribution of Ag:Au nanoparticles (around 5 nm). X-ray photoelectron spectroscopy (XPS) showed that the composition in the outer part of the Ag:Au nanoparticles was similar to that obtained by EDX analysis, which indicates the formation of homogeneous silver-gold nanoparticles. Silver-gold alloy nanoparticles on a gram scale can be obtained with this method.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sun, Y. and Xia, Y.: Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 126, 3892 (2004).CrossRefGoogle Scholar
2.Subramanian, R., Denney, P.E., Singh, J. and Otooni, M.: A novel technique for synthesis of silver nanoparticles by laser-liquid interaction. J. Mater. Sci. 33, 3471 (1998).CrossRefGoogle Scholar
3.Wang, Z.L.: Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 104, 1153 (2000).CrossRefGoogle Scholar
4.He, S.T., Xie, S.S., Yao, J.N., Gao, H.J. and Pang, S.: Self-assembled two-dimensional superlattice of Au–Ag alloy nanocrystals. J. Appl. Phys. Lett. 81, 150 (2002).CrossRefGoogle Scholar
5.Pena, S.R.N., Freeman, R.G., Reiss, B.D., He, L., Pena, D.J., Walton, I.D., Cromer, R., Keating, C.D. and Natan, M.J.: Submicrometer metallic barcodes. Science 294, 137 (2001).CrossRefGoogle Scholar
6.Esumi, K., Matsuhisa, K. and Torigoe, K.: Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template. Langmuir 11, 3285 (1995).CrossRefGoogle Scholar
7.Pilene, M.P.: Fabrication and properties of nanosized material made by using colloidal assemblies as templates crystal research and technology. Cryst. Res. Technol. 33, 1155 (1998).3.0.CO;2-A>CrossRefGoogle Scholar
8.Pileni, M.P., Tanori, J. and Filankembo, A.: Biomimetic strategies for the control of size, shape and self-organization of nanoparticles. Colloid Surf. A 123, 561 (1997).CrossRefGoogle Scholar
9.Jana, N.R., Gearheart, L. and Murphy, C.J.: Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105, 4065 (2001).CrossRefGoogle Scholar
10.Mallin, M.P. and Murphy, C.J.: Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles. Nano Lett. 2, 1235 (2002).CrossRefGoogle Scholar
11.Aihara, N., Torigoe, K. and Esumi, K.: Preparation and characterization of gold and silver nanoparticles in layered laponite suspensions. Langmuir 14, 4945 (1998).CrossRefGoogle Scholar
12.Sandhyarani, N. and Pradeep, T.: Crystalline solids of alloy clusters. Chem. Mater. 12, 1755 (2000).CrossRefGoogle Scholar
13.Moskovits, M., Sloufová, I.S. and Vicková, B.: Bimetallic Ag–Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys. 116, 10435 (2002).CrossRefGoogle Scholar
14.Devarajan, S., Vimalan, B. and Sampath, S.: Phase transfer of Au–Ag alloy nanoparticles from aqueous medium to an organic solvent: Effect of aging of surfactant on the formation of Ag-rich alloy compositions. J. Colloid Interface Sci. 278, 126 (2004).CrossRefGoogle Scholar
15.Yamamoto, M. and Nakamoto, M.: A new approach for the Ag/Au alloy nanoparticle formation through the reduction of Ag(I) to Ag(0) and intermetallic electron transfer from Ag(0) to gold (I) complex. Chem. Lett. 33, 1340 (2004).CrossRefGoogle Scholar
16.Cullity, B.D. and Stock, S.R.: Elements of X-Ray Diffraction, 3rd ed. (Prentice-Hall, Upper Saddle River, NJ, 2001), pp. 402404.Google Scholar
17.Kondarides, D.I. and Verykios, X.E.: Interaction of oxygen with supported Ag–Au alloy catalysts. J. Catal. 363, 158 (1996).Google Scholar
18.Capek, I.: Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv. Colloid Interface Sci. 110, 49 (2004).CrossRefGoogle ScholarPubMed
19.Suyal, G.: Bimetallic colloids of silver and copper in thin films: Sol-gel synthesis and characterization. Thin Solid Films 426, 53 (2003).CrossRefGoogle Scholar
20.Boyen, H.C., Kästle, G., Weigl, F., Kslowski, B., Dietrich, C., Ziemann, P., Spatz, J.P., Riethmüller, S., Hartmann, C., Möller, M., Schimid, G., Garnier, M.G. and Oelhafen, P.: Oxidation-resistant gold-55 clusters. Science 297, 1533 (2002).CrossRefGoogle ScholarPubMed
21.Cleveland, C.L., Landman, U., Schaaff, T.G., Shafigullin, M.N., Stephens, P.W. and Whetten, R.L.: Structural evolution of smaller gold nanocrystals: The truncated decahedral motif. Phys. Rev. Lett. 79, 1873 (1997).CrossRefGoogle Scholar
22.Purdum, H. and Montano, P.A.: Extended-x-ray absorption-fine structure study of small Fe molecules isolated in solid neon. Phys. Rev. B 25, 4412 (1982).CrossRefGoogle Scholar
23.Briggs, D. and Seah, M.P.: Practical Surface Analysis. Auger and X-ray Photoelectron Spectroscopy (John Wiley and Sons, Chichester, NY, 1990), pp. 503509.Google Scholar
24.Wang, A.Q., Liu, J.H., Lin, S.D., Lin, T.S. and Mou, C.Y.: A novel efficient Ag–Au alloy catalyst system: Preparation activity and characterization. J. Catal. 233, 186 (2005).CrossRefGoogle Scholar
25.Pireau, J.J., Liehr, M., Thirty, P.A., Delrue, J.P. and Caudano, R.: Electron spectroscopic characterization of oxygen adsorption on gold surfaces: II. Production of gold oxide in oxygen DC reactive sputtering. Surf. Sci. 141, 221 (1984).CrossRefGoogle Scholar
26.Koslowski, B., Boyen, H.G., Wilderotter, C., Kästle, G., Ziemann, P., Wahrenberg, R. and Oelhafen, P.: Oxidation of preferentially (1 1 1)-oriented Au films in an oxygen plasma investigated by scanning tunneling microscopy and photoelectron spectroscopy. Surf. Sci. 475, 1 (2001).CrossRefGoogle Scholar
27.Pauling, L.: The Nature of the Chemical Bond (Cornell University Press, New York, 1960), p. 93.Google Scholar
28.Bao, X., Muhler, M., Schedel-Niedrig, Th. and Schlöl, R.: Interaction of oxygen with silver at high temperature and atmospheric pressure: A spectroscopic and structural analysis of a strongly bound surface species. Phys. Rev. B 54, 2249 (1996).CrossRefGoogle ScholarPubMed
29.Wandelt, K.: Photoemission studies of adsorbed oxygen and oxide layers. Surf. Sci. Rep. 2, 1 (1982).CrossRefGoogle Scholar
30.Tjeng, L.H., Meinders, M.B., Van, J., Ghijsen, E.J., Sawatzky, G.A. and Johnson, R.L.: Electronic structure of Ag2O. Phys. Rev. B 41, 3190 (1990).CrossRefGoogle ScholarPubMed
31.Tanori, J. and Pileni, M.P.: Control of the shape of copper metallic particles by using a colloidal system as template. Langmuir 13, 639 (1997).CrossRefGoogle Scholar
32.Manna, A., Imae, T., Iida, M. and Hisamatsu, N.: Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex. Langmuir 17, 6000 (2001).CrossRefGoogle Scholar
33.Tanori, J. and Pileni, M.P.: Change in the shape of copper nanoparticles in ordered phases. Adv. Mater. 7, 862 (1995).CrossRefGoogle Scholar
34.Wu, M.L. and Lai, B.: Synthesis of Pt/Ag bimetallic nanoparticles in water-in-oil microemulsions. Colloids Surf. A 244, 149 (2004).CrossRefGoogle Scholar
35.Torigoe, K., Kakajima, Y. and Esumi, K.: Preparation and characterization of colloidal silver-platinum alloys. J. Phys. Chem. 97, 8304 (1993).CrossRefGoogle Scholar
36.Toshima, N., Harada, M., Yamazaki, Y. and Asakura, K.: Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride. J. Phys. Chem. 96, 9927 (1992).CrossRefGoogle Scholar
37.Lange, N.A.: Handbook of Chemistry (McGraw-Hill Book Company, New York, 1961).Google Scholar
38.ASM Handbook Alloy Phase Diagrams, Vol. 3 (ASM, Metals Park, OH, 1973).Google Scholar