Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-06T04:56:34.308Z Has data issue: false hasContentIssue false

Synthesis of Si2N2O nanowires in porous Si2N2O–Si3N4 substrate using Si powder

Published online by Cambridge University Press:  03 March 2011

Byong-Taek Lee*
Affiliation:
School of Advanced Materials Engineering, Kongju National University, Kongju City, Chungnam 314-701, South Korea
Rajat Kanti Paul
Affiliation:
School of Advanced Materials Engineering, Kongju National University, Kongju City, Chungnam 314-701, South Korea
Kap-Ho Lee
Affiliation:
School of Advanced Materials Engineering, Chungnam National University, Yuseong-gu, Daejon 305-764, South Korea
Hai-Doo Kim
Affiliation:
Ceramic Materials Group, Korea Institute of Machinery and Materials, Changwon, Kyungnam 641-010, South Korea
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The formation of synthesized Si2N2O nanowires using the process of Si nitridation depending on the addition of carbon was investigated. The diameter of the Si2N2O nanowires having a high aspect ratio of about 50–80 nm was found in the porous Si2N2O–Si3N4 substrate to which 6 wt% C was added. The synthesized Si2N2O nanowires had orthorhombic single-crystal structure covered with a thin (∼2 nm thick) amorphous layer and a large number of stacking faults along the (2 0 0) plane. The photoluminescence spectrum of Si2N2O nanowires showed a strong, stable green emission at 540 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayer, B., Gates, B., Yin, Y., Kim, F., and Yan, H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).CrossRefGoogle Scholar
2Pan, Z.W., Dai, Z.R., and Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291, 1947 (2001).CrossRefGoogle ScholarPubMed
3Yu, D.P., Hang, Q.L., Ding, Y., Zhang, H.Z., Bai, Z.G., Wang, J.J., and Zou, Y.H.: Amorphous silica nanowires: Intensive blue light emitters. Appl. Phys. Lett. 73, 3076 (1998).CrossRefGoogle Scholar
4Duan, X.F. and Lieber, C.M.: General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298 (2000).3.0.CO;2-Y>CrossRefGoogle Scholar
5Zhu, Y., Bando, Y., and Xue, D.: Spontaneous growth and luminescence of zinc sulfide nanobelts. Appl. Phys. Lett. 82, 1769 (2003).CrossRefGoogle Scholar
6Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).CrossRefGoogle Scholar
7Lu, M., Li, M.K., Kong, L.B., Guo, X.Y., and Li, H.L.: Silicon quantum-wires arrays synthesized by chemical vapor deposition and its micro-structural properties. Chem. Phys. Lett. 374, 542 (2003).CrossRefGoogle Scholar
8Niu, J., Sha, J., Wang, Y., Ma, X., and Yang, D.: Crystallization and disappearance of defects of the annealed silicon nanowires. Microelectronic Eng. 66, 65 (2003).CrossRefGoogle Scholar
9Morales, A.M. and Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).CrossRefGoogle ScholarPubMed
10Golberg, D., Rode, A., Bando, Y., Mitome, M., Gamaly, E., and Luther-Davies, B.: Boron nitride nanostructures formed by ultra-high-repetation rate laser ablation. Diamond Relat. Mater. 12, 1269 (2003).CrossRefGoogle Scholar
11Dai, H., Wong, E.W., Lu, Y.Z., Fan, S., and Lieber, C.M.: Synthesis and characterization of carbide nanorods. Nature 375, 769 (1995).CrossRefGoogle Scholar
12Han, W., Fan, S., Li, Q., and Hu, Y.: Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277, 1287 (1997).CrossRefGoogle Scholar
13Wang, Z.L., Gao, R.P., Gole, J.L., and Stout, J.D.: Silica nanotubes and nanofiber arrays. Adv. Mater. 12, 1938 (2000).3.0.CO;2-4>CrossRefGoogle Scholar
14Hu, J.Q., Jiang, Y., Meng, X.M., Lee, C.S., and Lee, S.T.: A simple large-scale synthesis of very long aligned silica nanowires. Chem. Phys. Lett. 367, 339 (2003).CrossRefGoogle Scholar
15Xie, R.J., Mitomo, M., Kim, W., and Kim, Y.W.: Texture development in silicon nitride–silicon oxynitride in situ composites via superplastic deformation. J. Am. Ceram. Soc. 83, 3147 (2000).CrossRefGoogle Scholar
16Sjoberg, J., Helgesson, G., and Idrestedt, I.: Refinement of the structure of Si2N2O. Acta Crystallogr. 47, 2438 (1991).Google Scholar
17Hajji, B., Temple-Boyer, P., Olivie, F., and Martinez, A.: Electrical characterization of thin silicon oxynitride films deposited by low pressure chemical vapor deposition. Thin Solid Films 354, 9 (1999).CrossRefGoogle Scholar
18Modreanu, M., Tomozeiu, N., Cosmin, P., and Gartner, M.: Optical properties of LPCVD silicon oxynitride. Thin Solid Films 337, 82 (1999).CrossRefGoogle Scholar
19Chollon, G., Hany, R., Vogt, U., and Berroth, K.: A silicon-29 MAS-NMR study of α-silicon nitride and amorphous silicon oxynitride fibres. J. Eur. Ceram. Soc. 18, 535 (1998).CrossRefGoogle Scholar
20Scheffler, M., Pippel, E., Woltersdorf, J., and Greil, P.: In situ formation of SiC–Si2N2O micro-composite materials from preceramic polymers. Mater. Chem. Phys. 80, 565 (2003).CrossRefGoogle Scholar
21Lee, B.T., Kim, K.H., and Han, J.K.: Microstructures and material properties of fibrous Al2O3–(m-ZrO2)/t-ZrO2 composites fabricated by a fibrous monolithic process. J. Mater. Res. 19, 3234 (2004).CrossRefGoogle Scholar
22Lee, B.T., Kang, I.C., Cho, S.H., and Song, H.Y.: Fabrication of a continuously oriented porous Al2O3 body and its in vitro study. J. Am. Ceram. Soc. 88, 2262 (2005).CrossRefGoogle Scholar
23Paul, R.K., Gain, A.K., Jang, H.D., and Lee, B.T.: Effect of addition of silicon on the microstructures and bending strength of continuous porous SiC–Si3N4 composites. J. Am. Ceram. Soc. 89, 2057 (2006).CrossRefGoogle Scholar
24Pan, Z.W., Dai, Z.R., Xu, L., Lee, S.T., and Wang, Z.L.: Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. J. Phys. Chem. B 105, 2507 (2001).CrossRefGoogle Scholar
25Seo, W.S. and Koumoto, K.: Stacking faults in β–SiC formed during carbothermal reduction of SiO2. J. Am. Ceram. Soc. 79, 1777 (1996).CrossRefGoogle Scholar
26Gao, Y.H., Bando, Y., Kurashima, K., and Sato, T.: The microstructural analysis of SiC nanorods synthesized through carbothermal reduction. Scripta Mater. 44, 1941 (2001).CrossRefGoogle Scholar
27Zhu, Y.Q., Hu, W.B., Hsu, W.K., Terrones, M., Grobert, N., Hare, J.P., Kroto, H.W., Walton, D.R.M., and Terrones, H.: SiC–SiO x heterojunctions in nanowires. J. Mater. Chem. 9, 3173 (1999).Google Scholar
28Edwards, D.P., Muddle, B.C., Cheng, Y.B., and Hannink, R.H.J.: The development of microstructure in silicon nitride-bonded silicon carbide. J. Eur. Ceram. Soc. 15, 415 (1995).CrossRefGoogle Scholar