Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T01:38:49.420Z Has data issue: false hasContentIssue false

Synthesis of Pt–OMG mesoporous composite via nanocasting and chemical vapor infiltration

Published online by Cambridge University Press:  16 January 2013

Hoi Yung*
Affiliation:
Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
Kwong-Yu Chan*
Affiliation:
Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
Frank Leung-Yuk Lam
Affiliation:
Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

When supported by suitable metal oxides such as ceria, platinum often displays increased catalytic activity and selectivity. A chemical vapor infiltration technique was used to impregnate Pt nanoparticles into an ordered mesoporous gadolinium-doped ceria (OMG), which was templated from KIT-6 silica. High Pt loading, up to 38 vol% of OMG, was achieved. This synthesis method is highly scalable and offers easy control over catalyst–support geometry. A detailed study of the OMG structure was conducted by controlling the synthesis parameters of the KIT-6 silica template. Formation mechanism and thermal stability of the OMG/Pt–OMG composite were also studied. The mesostructure composites were found to sustain until 750 and 650 °C, respectively. The highly structural composite holds the promise of increased activity, selectivity, and stability for applications in heterogeneous catalysis.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Campbell, C.T. and Peden, C.H.F.: Oxygen vacancies and catalysis on ceria surfaces. Science 309, 713 (2005).CrossRefGoogle ScholarPubMed
Gorte, R.J. and Zhao, S.: Studies of the water-gas-shift reaction with ceria-supported precious metals. Catal. Today 104, 18 (2005).CrossRefGoogle Scholar
Tauster, S.J., Fung, S.C., and Garten, R.L.: Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170 (1978).CrossRefGoogle Scholar
Sepúlveda-Escribano, A., Coloma, F., and Rodríguez-Reinoso, F.: Promoting effect of ceria on the gas phase hydrogenation of crotonaldehyde over platinum catalysts. J. Catal. 178, 649 (1998).CrossRefGoogle Scholar
Fu, Q., Saltsburg, H., and Flytzani-Stephanopoulos, M.: Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935 (2003).CrossRefGoogle ScholarPubMed
Yeung, C.M.Y., Yu, K.M.K., Fu, Q.J., Thompsett, D., Petch, M.I., and Tsang, S.C.: Engineering Pt in ceria for a maximum metal–support interaction in catalysis. J. Am. Chem. Soc. 127, 18010 (2005).CrossRefGoogle ScholarPubMed
Murray, E.P., Tsai, T., and Barnett, S.A.: A direct-methane fuel cell with a ceria-based anode. Nature 400, 649 (1999).CrossRefGoogle Scholar
Hornebecq, V., Antonietti, M., Cardinal, T., and Treguer-Delapierre, M.: Stable silver nanoparticles immobilized in mesoporous silica. Chem. Mater. 15, 1993 (2003).CrossRefGoogle Scholar
Sun, J., Ma, D., Zhang, H., Liu, X., Han, X., Bao, X., Weinberg, G., Pfänder, N., and Su, D.: Toward monodispersed silver nanoparticles with unusual thermal stability. J. Am. Chem. Soc. 128, 15756 (2006).CrossRefGoogle ScholarPubMed
Niederer, J.P.M., Arnold, A.B.J., Hölderich, W.F., Spliethof, B., Tesche, B., Reetz, M., and Bönnemann, H.: Noble metal nanoparticles incorporated in mesoporous hosts. Top. Catal. 18, 265 (2002).CrossRefGoogle Scholar
Yang, H., Shi, Q., Tian, B., Lu, Q., Gao, F., Xie, S., Fan, J., Yu, C., Tu, B., and Zhao, D.: One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. J. Am. Chem. Soc. 125, 4724 (2003).CrossRefGoogle ScholarPubMed
Zhu, K., He, H., Xie, S., Zhang, X., Zhou, W., Jin, S., and Yue, B.: Crystalline WO3 nanowires synthesized by templating method. Chem. Phys. Lett. 377, 317 (2003).CrossRefGoogle Scholar
Zhu, K.K., Yue, B., Zhou, W.Z., and He, H.Y.: Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15. Chem. Commun., 39, 98 (2003).CrossRefGoogle Scholar
Jiao, K., Zhang, B., Yue, B., Ren, Y., Liu, S., Yan, S., Dickinson, C., Zhou, W., and He, H.: Growth of porous single-crystal Cr2O3 in a 3-D mesopore system. Chem. Commun., 41, 5618 (2005).CrossRefGoogle Scholar
Dickinson, C., Zhou, W., Hodgkins, R.P., Shi, Y., Zhao, D., and He, H.: Formation mechanism of porous single-crystal Cr2O3 and Co3O4 templated by mesoporous silica. Chem. Mater. 18, 3088 (2006).CrossRefGoogle Scholar
Jiao, F., Harrison, A., Hill, A.H., and Bruce, P.G.: Mesoporous Mn2O3 and Mn3O4 with crystalline walls. Adv. Mater. 19, 4063 (2007).CrossRefGoogle Scholar
Yue, W. and Zhou, W.: Synthesis of porous single crystals of metal oxides via a solid−liquid route. Chem. Mater. 19, 2359 (2007).CrossRefGoogle Scholar
Jiao, F., Hill, A.H., Harrison, A., Berko, A., Chadwick, A.V., and Bruce, P.G.: Synthesis of ordered mesoporous NiO with crystalline walls and a bimodal pore size distribution. J. Am. Chem. Soc. 130, 5262 (2008).CrossRefGoogle Scholar
Wang, Y., Yuan, X., Liu, X., Ren, J., Tong, W., Wang, Y., and Lu, G.: Mesoporous single-crystal Cr2O3: Synthesis, characterization, and its activity in toluene removal. Solid State Sci. 10, 1117 (2008).CrossRefGoogle Scholar
Yue, W. and Zhou, W.: Crystalline mesoporous metal oxide. Prog. Nat. Sci. 18, 1329 (2008).CrossRefGoogle Scholar
Rossinyol, E., Pellicer, E., Prim, A., Estradé, S., Arbiol, J., Peiró, F., Cornet, A., and Morante, J.: Gadolinium doped Ceria nanocrystals synthesized from mesoporous silica. J. Nanopart. Res. 10, 369 (2008).CrossRefGoogle Scholar
Guo, X-J., Yang, C-M., Liu, P-H., Cheng, M-H., and Chao, K-J.: Formation and growth of platinum nanostructures in cubic mesoporous silica. Cryst. Growth Des. 5, 33 (2004).CrossRefGoogle Scholar
Zhao, D., Yang, P., Melosh, N., Feng, J., Chmelka, B.F., and Stucky, G.D.: Continuous mesoporous silica films with highly ordered large pore structures. Adv. Mater. 10, 1380 (1998).3.0.CO;2-8>CrossRefGoogle Scholar
Kim, T-W., Kleitz, F., Paul, B., and Ryoo, R.: MCM-48-like large mesoporous silicas with tailored pore structure: Facile synthesis domain in a ternary triblock copolymer−butanol−water system. J. Am. Chem. Soc. 127, 7601 (2005).CrossRefGoogle Scholar
Rossinyol, E., Arbiol, J., Peir, F., Cornet, A., Morante, J.R., Tian, B., Bo, T., and Zhao, D.: Nanostructured metal oxides synthesized by hard template method for gas sensing applications. Sens. Actuators, B 109, 57 (2005).CrossRefGoogle Scholar
Kim, T-W. and Solovyov, L.A.: Synthesis and characterization of large-pore ordered mesoporous carbons using gyroidal silica template. J. Mater. Chem. 16, 1445 (2006).CrossRefGoogle Scholar
Lee, J., Christopher Orilall, M., Warren, S.C., Kamperman, M., DiSalvo, F.J., and Wiesner, U.: Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat. Mater. 7, 222 (2008).CrossRefGoogle ScholarPubMed
Shi, Y., Guo, B., Corr, S.A., Shi, Q., Hu, Y-S., Heier, K.R., Chen, L., Seshadri, R., and Stucky, G.D.: Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett. 9, 42154220 (2009).CrossRefGoogle ScholarPubMed
Schoen, A.H.: Infinite Periodic Minimal Surfaces Without Self-intersections (1970), NASA Technical Note TN D-5541. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19700020472_1970020472.pdf.Google Scholar
Zhang, T.S., Ma, J., Chan, S.H., Hing, P., and Kilner, J.A.: Intermediate-temperature ionic conductivity of ceria-based solid solutions as a function of gadolinia and silica contents. Solid State Sci. 6, 565 (2004).CrossRefGoogle Scholar
Bickerdike, R.L., Brown, A.R.G., Hughes, G., and Ranson, H.: The deposition of pyrolytic carbon in the pores of bonded and unbonded carbon powders. In Proceedings of the Fifth Conference on Carbon, 1; M.L. Studebaker and P.L. Walker, eds., Pergamon Press: New York, NY, 1961.Google Scholar
Besmann, T.M., Sheldon, B.W., Lowden, R.A., and Stinton, D.P.: Vapor-phase fabrication and properties of continuous-filament ceramic composites. Science 253, 1104 (1991).CrossRefGoogle ScholarPubMed
Lee, K.B., Lee, S.M., and Cheon, J.: Size-controlled synthesis of Pd nanowires using a mesoporous silica template via chemical vapor infiltration. Adv. Mater. 13, 517 (2001).3.0.CO;2-8>CrossRefGoogle Scholar
Zhang, Y., Lam, F.L-Y., Hu, X., Yan, Z., and Sheng, P.: Fabrication of copper nanowire encapsulated in the pore channels of SBA-15 by metal organic chemical vapor deposition. J. Phys. Chem. C 111, 12536 (2007).CrossRefGoogle Scholar
Golunski, S.: Why use platinum in catalytic converters? Platinum Met. Rev. 51, 1 (2007).Google Scholar
Yu, R., Song, H., Zhang, X-F., and Yang, P.: Thermal wetting of platinum nanocrystals on silica surface. J. Phys. Chem. B 109, 6940 (2005).CrossRefGoogle ScholarPubMed
Simrick, N.J., Kilner, J.A., and Atkinson, A.: Thermal stability of silver thin films on zirconia substrates. Thin Solid Films 520, 2855 (2012).CrossRefGoogle Scholar