Published online by Cambridge University Press: 31 January 2011
(Ni,Zn)Fe2O4 particle/organic hybrid was synthesized in situ from metalorganics below 100 °C. A mixture of nickel (II) acetylacetonate (NA), zinc acetylacetonate (ZA), and iron (III) 3-allylacetylacetonate (IAA) was hydrolyzed and polymerized yielding a spinel oxide particle/organic hybrid. X-ray diffraction analysis revealed that the crystallinity of spinel particles was dependent upon the hydrolysis conditions of NA-ZA-IAA. Nanocrystalline nickel zinc ferrite particles below 5 nm were uniformly dispersed in the organic matrix. The magnetization of hybrid increased with an increasing amount of water for hydrolysis. Nano-sized nickel zinc ferrite particle/organic hybrid showed a magnetization-applied field (BH) curve with no remanence above 40 K. The magnetization versus H/T curves from 40 to 100 K were superimposed on the same curve and satisfied the Langevin equation. The remanent magnetization and coercive field of the hybrid were 7.2 emu/g and 150 Oe, respectively, at 4.2 K. The absorption edge of the hybrid was blue-shifted compared with that of bulk ferrite.