Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T05:25:34.005Z Has data issue: false hasContentIssue false

Synthesis of nanocrystalline diamond by the direct ion beam deposition method

Published online by Cambridge University Press:  31 January 2011

X. S. Sun
Affiliation:
Center of Super-Diamond and Advanced Films, Department of Physics & Materials Science, City University of Hong Kong, Hong Kong
N. Wang
Affiliation:
Center of Super-Diamond and Advanced Films, Department of Physics & Materials Science, City University of Hong Kong, Hong Kong
W. J. Zhang
Affiliation:
Center of Super-Diamond and Advanced Films, Department of Physics & Materials Science, City University of Hong Kong, Hong Kong
H. K. Woo
Affiliation:
Center of Super-Diamond and Advanced Films, Department of Physics & Materials Science, City University of Hong Kong, Hong Kong
X. D. Han
Affiliation:
Center of Super-Diamond and Advanced Films, Department of Physics & Materials Science, City University of Hong Kong, Hong Kong
I. Bello
Affiliation:
Center of Super-Diamond and Advanced Films, Department of Physics & Materials Science, City University of Hong Kong, Hong Kong
C. S. Lee
Affiliation:
Center of Super-Diamond and Advanced Films, Department of Physics & Materials Science, City University of Hong Kong, Hong Kong
S. T. Lee*
Affiliation:
Center of Super-Diamond and Advanced Films, Department of Physics & Materials Science, City University of Hong Kong, Hong Kong
*
a) Address all correspondence to this author.[email protected]
Get access

Abstract

Nanocrystalline diamond has been synthesized on a mirror-polished Si(001) substrate by means of direct ion beam deposition. Low-energy (80–200 eV) hydrocarbon and hydrogen ions, generated in a Kaufman ion source, were used to bombard the substrates. The bombarded samples were characterized by high-resolution transmission electron microscopy and Raman spectroscopy. Nanocrystalline diamond particles of random orientation were observed in a matrix of amorphous carbon film on the Si(001) substrate. The size of the nanocrystalline diamond particles varied in the range of 50–300 Å. The mechanism of ion-induced formation of nanocrystalline diamond is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1036 (1991).CrossRefGoogle Scholar
2.Stoner, B.R. and Glass, J.T., Appl. Phys. Lett. 60, 698 (1992).CrossRefGoogle Scholar
3.Jiang, X. and Klages, C-P., Diamond Relat. Mater. 1, 195 (1992).Google Scholar
4.Walter, S.D., Stoner, B.R., Glass, J.T., Ellis, P.J., Buhaenko, D.S., Jenkins, C.E., and Southworth, P., Appl. Phys. Lett. 62, 1215 (1993).CrossRefGoogle Scholar
5.Jiang, X., Klages, C-P., Zachai, R., Hartweg, M., and Fusser, H-J., Appl. Phys. Lett. 62, 3438 (1993).CrossRefGoogle Scholar
6.Jiang, X., Zhang, W.J., Paul, M., and Klages, C-P., Appl. Phys. Lett. 68, 1927 (1996).CrossRefGoogle Scholar
7.Zhang, W.J., Jiang, X., and Xia, Y.B., J. Appl. Phys. 82, 1896 (1997).CrossRefGoogle Scholar
8.McGinnis, S.P., Kelly, M.A., and Hagström, S.B., Appl. Phys. Lett. 66, 3117 (1995).CrossRefGoogle Scholar
9.Derry, T.E. and Sellschop, J.P.F, Nucl. Instrum. Methods 191, 23 (1981).CrossRefGoogle Scholar
10.Nelson, R.S., Hudson, J.A., Mazey, D.J., and Piller, R.C., Proc. R. Soc. London A286, 211 (1983).Google Scholar
11.Lee, S-T., Lau, W.M., Huang, L.J., Ren, Z., and Qin, F., Diamond Relat. Mater. 7, 96 (1995).Google Scholar
12.Buckly-Golder, I.M., Bullough, R., Hayns, M.R., Willis, J.R., Piller, R.C., Blamires, N.G., Gard, G., and Stephen, J., Diamond Relat. Mater. 1, 43 (1991).CrossRefGoogle Scholar
13.Kitabatake, M. and Wasa, K., J. Appl. Phys. 58, 1693 (1985).CrossRefGoogle Scholar
14.Prins, J.F. and Gaipher, H.L., in New Diamond Science and Technology, edited by Messier, R. and Glass, J.T. (MRS, Pittsburgh, PA 1991), p. 561.Google Scholar
15.Lee, S.T., Chen, S., Braunstein, G., Feng, X., Bello, I., and Lau, W.M., Appl. Phys. Lett. 59, 785 (1991).CrossRefGoogle Scholar
16.Guo, Y.P., Lam, K.L., Liu, K.M., Kwok, R.W.M, and Hui, K.C., J. Mater. Res. 13, 2315 (1998).CrossRefGoogle Scholar
17.Sun, X.S., Wang, N., Woo, H.K., Zhang, W.J., Yu, G., Bello, I., Lee, C.S., and Lee, S.T., Diamond Relat. Mater. (in press).Google Scholar
18.Shroder, R.E., Nemanich, R.J., and Glass, J.T., Phys. Rev. B 41, 3738 (1990).CrossRefGoogle Scholar
19.Robertson, J., Diamond Relat. Mater. 4, 549 (1995).CrossRefGoogle Scholar
20.Robertson, J., Gerber, J., Sattel, S., Weiler, M., Jung, K., and Ehrhardt, H., Appl. Phys. Lett. 66, 3287 (1995).CrossRefGoogle Scholar
21.Pharr, G.M., Callahan, D.L., McAdams, S.D., Tsui, T.Y., Anders, S., Anders, A., Ager, J.W. III, Brown, I.G., Bhatia, C.S., Silva, S.R.P, and Robertson, J., Appl. Phys. Lett. 68, 779 (1996).CrossRefGoogle Scholar
22.Lee, S.T., Chen, S., Agostinelli, J., and Braunstein, G., Appl. Phys. Lett. 60, 2213 (1992).CrossRefGoogle Scholar
23.Kulisch, W., Ackermann, L., and Sobisch, B., Phys. Stat. Sol. (A) 154, 155 (1996).CrossRefGoogle Scholar