Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T02:12:19.406Z Has data issue: false hasContentIssue false

Synthesis of mullite coatings by chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Rao P. Mulpuri
Affiliation:
Department of Manufacturing Engineering, Boston University, Boston, Massachusetts 02215
Vinod K. Sarin
Affiliation:
Department of Manufacturing Engineering, Boston University, Boston, Massachusetts 02215
Get access

Abstract

Formation of mullite on ceramic substrates via chemical vapor deposition was investigated. Mullite is a solid solution of Al2O3 and SiO2 with a composition of 3Al2O3 · 2SiO2. Thermodynamic calculations performed on the AlCl3–SiCl4–CO2–H2 system were used to construct equilibrium chemical vapor deposition (CVD) phase diagrams. With the aid of these diagrams and consideration of kinetic rate limiting factors, initial process parameters were determined. Through process optimization, crystalline CVD mullite coatings have been successfully grown on SiC and Si3N4 substrates. Results from the thermodynamic analysis, process optimization, and effect of various process parameters on deposition rate and coating morphology are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jacobson, N. S., J. Am. Ceram. Soc. 76 (1), 328 (1993).CrossRefGoogle Scholar
2.Richerson, D. W., Carruthers, W. D., and Lindberg, L. J., Materials Science Research edited by Pask, J.A. and Evans, A. (Plenum Press, New York, 1981), Vol. 14, pp. 661676.Google Scholar
3.Lee, K. N., Miller, R. A., and Jacobson, N. S., Ceramic Transactions, edited by Bansal, N. P. (The American Ceramic Society, Westerville, OH, 1993), Vol. 38, pp. 565575.Google Scholar
4.Schienle, J. and Smyth, J., Final Report, ORNL/Sub/84–47992/1 (1987).Google Scholar
5.Lackey, W. J., Stinton, D. P., Cerny, G. A., Fehrenbacher, L. L., and Schaffhauser, A. C., ORNL/TM-8959 (1984).Google Scholar
6.Lackey, W. J., Stinton, D. P., Cerny, G. A., Fehrenbacher, L. L., and Schaffhauser, A. C., Adv. Ceram. Mater. 2 (1), (1987).Google Scholar
7.Federer, J. I., Adv. Ceram. Mater. 3 (1), 56 (1988).CrossRefGoogle Scholar
8.Aksay, I. A. and Pask, J.A., J. Am. Ceram. Soc. 58 (11–12), 507 (1975).CrossRefGoogle Scholar
9.Lee, K. N., Jacobson, N. S., and Miller, R. A., MRS Bull. 19 (10), 3538 (1994).CrossRefGoogle Scholar
10.Colmet, R. and Naslain, R., Wear 80, 221231 (1982).CrossRefGoogle Scholar
11.Park, C. S., Kim, J. G., and Chun, J. S., J. Vac. Sci. Technol. A1 (4), 18201824 (1983).CrossRefGoogle Scholar
12.Oroshnik, J. and Kraitchman, J., J. Electrochem. Soc. 155 (6), 649652 (1968).CrossRefGoogle Scholar
13.Hanni, W., Hintermann, H. E., Morel, D., and Simmen, A., Surf. Coatings Technol. 36, 463470 (1988).CrossRefGoogle Scholar
14.Adams, A. C. and Capio, C. D., J. Electrochem. Soc. 126 (6), 10421046 (1979).CrossRefGoogle Scholar
15.Spear, K. E., Proc. 7th Int. Conf. on CVD, edited by Sedgwick, T. O. and Lydtin, H. (Electrochemical Society, Pennington, NJ, 1979), pp. 116.Google Scholar
16.Besmann, T. M., Proc. 1st Int. Conf. on Surface Modification Technology, 17th TMS Annual Meeting, edited by Sudarshan, T. S. and Bhat, D. G., AZ, Phoenix, January 25–28 (1988), pp. 311325.Google Scholar
17.Kingon, A. I. and Davis, R. F., in Conference on Emergent Process Methods for High-Technology Ceramics, edited by Davis, R. F., Palmour, H. III, and Porter, R. L., Raleigh, NC (1982), pp. 317328.Google Scholar
18.Vandenbulcke, L., J. Electrochem. Soc. 128 (7), 15841587 (1981).CrossRefGoogle Scholar
19.Moss, T. S., Hanigofsky, J.A., and Lackey, W. J., J. Mater. Res. 7, 754764 (1992).CrossRefGoogle Scholar
20.Teyssandier, F., Ducarrior, M., and Bernard, C., J. Less-Comm. Metals 78, 269274 (1981).CrossRefGoogle Scholar
21.Bernard, C., Proc. 8th Int. Conf. on CVD, Gouvieux, France (The Electrochemical Society, Pennington, NJ, 1981), pp. 316.Google Scholar
22.Rebenne, H. E., and Sarin, V. K., Proc. 25th Automotive Technology Development Contract Coordinators Meeting, SAE (1987) pp. 199206.Google Scholar
23.Besmann, T. M., ORNL/TM-5775, Oak Ridge National Laboratory, Oak Ridge, TN (1989).Google Scholar
24.Eriksson, G., Acta Chem. Scand. 25 (7), 26512658 (1971).CrossRefGoogle Scholar
25.Jensen, K. F., Microelectronics Processing: Chemical Engineering Aspects, edited by Hess, D. W. and Jensen, K. F. (American Chemical Society, Washington, DC, 1989), p. 199.CrossRefGoogle Scholar
26.Stull, D. R. and Prophet, H., JANAF Thermochemical Tables, 3rd ed., Parts I and II (American Institute of Physics, U.S. Government Printing Office, Washington, DC, 1986).Google Scholar
27.Mulpuri, R. and Sarin, V. K., 19th Annual Cocoa Beach Conference and Exposition on Engineering Ceramics, Cocoa Beach, FL (The American Ceramic Society, Westerville, OH, January 1995).Google Scholar
28.Mulpuri, R. and Sarin, V. K., US Patent Application Filed, Serial Number 08/368,814, January 1995.Google Scholar