Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T07:33:41.989Z Has data issue: false hasContentIssue false

Synthesis of metastable tetragonal (t′) zirconia-calcia solid solution by pyrolysis of organic precursors and coprecipitation route

Published online by Cambridge University Press:  31 January 2011

Masatomo Yashima
Affiliation:
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama, 226, Japan
Masato Kakihana
Affiliation:
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama, 226, Japan
Koutaroh Ishii
Affiliation:
Department of Industrial Chemistry, Faculty of Technology, Kanagawa Institute of Technology, Shimo-Ogino 1030, Atsugi, Kanagawa, 243–02, Japan
Yasuro Ikuma
Affiliation:
Department of Industrial Chemistry, Faculty of Technology, Kanagawa Institute of Technology, Shimo-Ogino 1030, Atsugi, Kanagawa, 243–02, Japan
Masahiro Yoshimura
Affiliation:
Research Laboratory of Engineering Materials, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama, 226, Japan
Get access

Abstract

Three kinds of chemical processes, citrate gel process, acetate gel process, and coprecipitation route, have been applied to the synthesis of homogeneous metastable tetragonal (t′) and cubic solid solutions of ZrO2X mol% CaO (X = 4–20). From a Raman scattering study, the citrate gel process based on the gelation of the aqueous solution of citric acid containing Zr and Ca ions was found to produce compositionally homogeneous samples in comparison with the other two methods. The axial ratio c/a decreases with increasing concentration of CaO and becomes unity around 8–10 mol% CaO composition.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Garvie, R. C., Hannink, R. H., and Pascoe, R. T., Nature (London) 258, 703 (1975).CrossRefGoogle Scholar
2.Green, D. J., Hannink, R.H.J., and Swain, M.V., Transformation Toughening of Ceramics (CRC Press, Inc., Boca Raton, FL, 1989).Google Scholar
3.Yashima, M., Noma, T., Ishizawa, N., and Yoshimura, M., J. Am. Ceram. Soc. 74, 3011 (1991).CrossRefGoogle Scholar
4.Yashima, M., Ishizawa, N., and Yoshimura, M., J. Am. Ceram. Soc. 75, 1550 (1992).CrossRefGoogle Scholar
5.Etsell, T. H. and Flengas, S.N., Chem. Rev. 70, 339 (1970).CrossRefGoogle Scholar
6.Hellmann, J. R. and Stubican, V.S., J. Am. Ceram. Soc. 66, 260 (1983).CrossRefGoogle Scholar
7.Miller, R. A., Smialek, J. L., and Garlick, R. G., in Science and Technology of Zirconia, Advances in Ceramics, edited by Heuer, A.H. and Hobbs, L. W. (The American Ceramic Society, Westerville, OH, 1981), Vol. 3, pp. 241253.Google Scholar
8.Yashima, M., Ohtake, K., Arashi, H., Kakihana, M., and Yoshimura, M., J. Appl. Phys. 74, 7603 (1993).CrossRefGoogle Scholar
9.Yashima, M., Ishizawa, N., and Yoshimura, M., J. Am. Ceram. Soc. 76, 641 (1993).CrossRefGoogle Scholar
10.Yashima, M., Ishizawa, N., and Yoshimura, M., J. Am. Ceram. Soc. 76, 649 (1993).CrossRefGoogle Scholar
11.Yashima, M., Ishizawa, N., and Yoshimura, M., in Science and Technology of ZIRCONIA V, edited by S.Badwal, P.S., Bannister, M. J., and R.Hannink, H.J. (Technomic Pub. Co., Lancaster, PA, 1993), p. 125.Google Scholar
12.Yashima, M., Sasaki, S., Kakihana, M., Yamaguchi, Y., Arashi, H., and Yoshimura, M., Acta Crystallogr. B 50, 663 (1994).CrossRefGoogle Scholar
13.Lefevre, J., Ann. Chim. 7, 117 (1963).Google Scholar
14.Scott, H. G., J. Mater. Sci. 10, 1527 (1975).CrossRefGoogle Scholar
15.Noma, T., Yoshimura, M., Sōmiya, S., Kato, M., Shibata, M., and Seto, H., J. Mater. Sci. 23, 2689 (1988).CrossRefGoogle Scholar
16.Yoshimura, M., Yashima, M., Noma, T., and Sōmiya, S., J. Mater. Sci. 25, 2011 (1990).CrossRefGoogle Scholar
17.Yashima, M., Ohtake, K., Kakihana, M., and Yoshimura, M., J. Am. Ceram. Soc. 77, 2773 (1994).CrossRefGoogle Scholar
18.Kumar Saha, S. and Pramanik, P., Br. Ceram. Trans. 94, 123 (1995).Google Scholar
19.Shimazaki, M., Hirota, K., Yamaguchi, O., Fujii, S., Tamamaki, M., Inamura, S., Miyamoto, M., and Kume, S., Mater. Res. Bull. 28, 877 (1993).CrossRefGoogle Scholar
20.Jayaram, V., De Graef, M., and Levi, C.G., Acta Metall. Mater. 42, 1829 (1994).CrossRefGoogle Scholar
21.Brett, N. H., Gonzalez, M., Bouillot, J., and Niepce, J. C., J. Mater. Sci. 19, 11349 (1984).CrossRefGoogle Scholar
22.Kundu, P., Pal, D., and Sen, S., J. Mater. Sci. 23, 1539 (1988).CrossRefGoogle Scholar
23.George, A. M., Vaidya, M. A., Phadnis, A.B., and Mishra, N. C., J. Mater. Sci. 26, 4194 (1991).CrossRefGoogle Scholar
24.Leung, D. K., Chan, C.J., Rühle, M., and Lange, F.F., J. Am. Ceram. Soc. 74, 2786 (1991).CrossRefGoogle Scholar
25.Balmer, M.L., Lange, F.F., and Levi, C.G., J. Am. Ceram. Soc. 75, 946 (1992).CrossRefGoogle Scholar
26.Marcilly, C., Courty, P., and Delmon, B., J. Am. Ceram. Soc. 53, 56 (1970).CrossRefGoogle Scholar
27.van de Graaf, M.A.C.G., van Dijk, T., de Jongh, M. A., and Burggraaf, A. J., Science Ceram. 9, 75 (1977).Google Scholar
28.Yashima, M., Ohtake, K., Kakihana, M., and Yoshimura, M., J. Mater. Sci. Lett. 13, 1564 (1994).CrossRefGoogle Scholar
29.Leroy, E., Robin Brosse, C., and Torre, J. P., in Ultrastructure Processing of Advanced Materials, edited by Mackenzie, J.D. and Ulich, D. R. (John Wiley, New York, 1988), p. 219.Google Scholar
30.Samdi, A., Durand, B., Roubin, M., Daoudi, A., Taha, M., Paletto, J., and Fantozzi, G., J. European Ceram. Soc. 12, 353 (1993).CrossRefGoogle Scholar
31.Kakihana, M., Yashima, M., Yoshimura, M., Börjesson, L., and Käll, M., Trends in Applied Spectroscopy 1, 261 (1993).Google Scholar
32.Toraya, H., J. Appl. Crystallogr. 19, 440 (1986).CrossRefGoogle Scholar
33.Yashima, M., Ishizawa, N., and Yoshimura, M., J. Am. Ceram. Soc. 75, 1541 (1992).CrossRefGoogle Scholar
34.Duran, P., Recio, P., and Rodriguez, J.M., J. Mater. Sci. 23, 4248 (1986).Google Scholar
35.Duwez, P., Odell, F., and Brown, F. H. Jr., J. Am. Ceram. Soc. 35, 107 (1952).CrossRefGoogle Scholar
36.Garvie, R. C., J. Am. Ceram. Soc. 51, 553 (1968).CrossRefGoogle Scholar
37.Tien, T. Y. and Subbarao, E. C., J. Chem. Phys. 39, 1041 (1963).CrossRefGoogle Scholar
38.Yashima, M., Morimoto, K., Ishizawa, N., and Yoshimura, M., J. Am. Ceram. Soc. 76, 1745 (1993).CrossRefGoogle Scholar
39.Cohen, I. and Schaner, B. E., J. Nucl. Mater. 9, 18 (1963).CrossRefGoogle Scholar
40.Yashima, M., Ohtake, K., Kakihana, M., Arashi, H., and Yoshimura, M., J. Phys. Chem. Solids 57, 17 (1996).CrossRefGoogle Scholar
41.Yoshimura, M., Am. Ceram. Soc. Bull. 67, 1950 (1988).Google Scholar
42.Keramidas, V. G. and White, W. B., J. Phys. Chem. Solids 34, 1873 (1973).CrossRefGoogle Scholar
43.Kragten, J., Atlas of Metal-Ligand Equilibria in Aqueous Solution (John Wiley / Sons, New York, 1978).Google Scholar
44.Faber, J. Jr., Mueller, M. H., and Cooper, B. R., Phys. Rev. B 17, 4884 (1978).CrossRefGoogle Scholar
45.Yashima, M., Takahashi, H., Ohtake, K., Hirose, T., Kakihana, M., Arashi, H., Ikuma, Y., Suzuki, Y., and Yoshimura, M., J. Phys. Chem. Solids 57, 289 (1996).CrossRefGoogle Scholar