Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T22:30:49.610Z Has data issue: false hasContentIssue false

Synthesis of magnesium-doped TiO2 photoelectrodes for dye-sensitized solar cell applications by solvothermal microwave irradiation method

Published online by Cambridge University Press:  11 May 2018

Janoha Manju*
Affiliation:
Department of EEE, Arunachala College of Engineering for Women, Vellichanthai, Tamilnadu 629203, India
Soosai Michael Joseph Jawhar
Affiliation:
Department of EEE, Arunachala College of Engineering for Women, Vellichanthai, Tamilnadu 629203, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Pure and magnesium-doped TiO2 nanoparticles (NPs) of three different concentrations (3, 6, and 9 mol%) were synthesized by a simple, cost effective solvothermal microwave irradiation method and characterized by XRD, EDAX, transmission electron microscopy (TEM), and UV-Vis diffuse reflection spectroscopy. X-ray diffraction studies performed on synthesized NPs have shown that the anatase phase is preserved after doping and the dopant does not change the crystalline phase (anatase) of the parent material (TiO2). TEM results revealed that the particle size was significantly reduced with increasing dopant concentration and are spherical in shape. For the JV measurements, the devices were subjected to the simulated sun light of 100 mW/cm2 irradiation with a working electrode area of 0.25 cm2 (0.5 × 0.5 cm). The results show that the dye-sensitized solar cell based on a 3 mol% Mg-doped TiO2 electrode achieved a photoelectrical conversion efficiency of 7.36% which is perceptibly increased by 17.6% than undoped TiO2 (6.26%).

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pfaff, G. and Reynders, P.: Angle-dependent optical effects deriving from submicron structures of films and pigments. Chem. Rev. 99, 1963 (1999).Google Scholar
Harrison, A.W. and Walton, M.R.: Radiative cooling of TiO2 white paint. Sol. Energy 20, 185 (1978).Google Scholar
Salvador, A., Pascual-Marti, M.C., Adell, J.R., Requeni, A., and March, J.G.: Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen cream. J. Pharm. Biomed. Anal. 22, 301 (2000).Google Scholar
Liu, L. and Chen, X.: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114, 9890 (2014).Google Scholar
Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., and Xu, Y.: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).Google Scholar
Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., and Li, C.: Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987 (2014).Google Scholar
O’Regan, B. and Gratzel, M.: A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 353, 737 (1991).Google Scholar
Grätzel, M.: Dye-sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev. 4, 145 (2003).Google Scholar
Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., and Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110, 6595 (2010).CrossRefGoogle ScholarPubMed
Horiuchi, T., Miura, H., Sumioka, K., and Uchida, S.: High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 126, 12218 (2004).Google Scholar
Palomares, E., Clifford, J.N., Haque, S.A., Lutz, T., and Durrant, J.R.: Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J. Am. Chem. Soc. 125, 475 (2003).CrossRefGoogle ScholarPubMed
Grätzel, M.: Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. Chem. 164, 3 (2004).Google Scholar
Serpone, N., Lawless, D., and Khairutdinov, R.: Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size quantization versus direct transitions in this indirect semiconductor? J. Phys. Chem. 99, 16646 (1995).Google Scholar
Ling, Y., Wang, G., Wheeler, D.A., Zhang, J.Z., and Li, Y.: Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11, 2119 (2011).Google Scholar
Duan, Y., Fu, N., Liu, Q., Fang, Y., Zhou, X., and Zhang, J.: Sn-doped TiO2 photoanode for dye-sensitized solar cells. J. Phys. Chem. C 116, 8888 (2012).Google Scholar
Zhang, C., Chen, S., Mo, L., Huang, Y., Tian, H., and Hu, L.: Charge recombination and band-edge shift in the dye-sensitized Mg2+-doped TiO2 solar cells. J. Phys. Chem. C 115, 16418 (2011).Google Scholar
Jung, H.S., Lee, J.K., Nastasi, M., Lee, S.W., Kim, J.Y., and Park, J.S.: Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells. Langmuir 21, 10332 (2005).Google Scholar
Kumara, G.R., Okuya, M., Murakami, K., Kaneko, S., Jayaweera, V., and Tennakone, K.: Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films: Enhancement of the efficiency. J. Photochem. Photobiol. Chem. 164, 183 (2004).Google Scholar
Navas, J., Aguilar, T., Fernández-Lorenzo, C., Alcántara, R., De Santos, D.L.M., and Sánchez-Coronilla, A.: Cu(II)-doped TiO2 nanoparticles as photoelectrode in dye-sensitized solar Cells: Improvement of open-circuit voltage and a light scattering effect. Sci. Adv. Mater. 6, 473 (2014).Google Scholar
Inturi, S.N.R., Boningari, T., Suidan, M., and Smirniotis, P.G.: Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Appl. Catal., B 144, 333 (2014).CrossRefGoogle Scholar
Zhang, X., Liu, F., Huang, Q.L., Zhou, G., and Wang, Z.S.: Dye-sensitized W-doped TiO2 solar cells with a tunable conduction band and suppressed charge recombination. J. Phys. Chem. C 115, 12665 (2011).Google Scholar
Kakiage, K., Tokutome, T., Iwamoto, S., Kyomen, T., and Hanaya, M.: Fabrication of a dye-sensitized solar cell containing a Mg-doped TiO2 electrode and a Br3−/Br redox mediator with a high open-circuit photovoltage of 1.21 V. Chem. Commun. 49, 179 (2013).Google Scholar
Ma, T., Akiyama, M., Abe, E., and Imai, I.: High-efficiency dyesensitized solar cell based on a nitrogen-doped nanostructured titania electrode. Nano Lett. 5, 2543 (2005).Google Scholar
Sun, Q., Zhang, J., Wang, P., Zheng, J., Zhang, X., Cui, Y., Feng, J., and Zhu, Y.: Sulfur-doped TiO2 nanocrystalline photoanodes for dyesensitized solar cells. J. Renew. Sustain. Energy 4, 023104 (2012).Google Scholar
Hou, Q., Zheng, Y., Chen, J.F., Zhou, W., Deng, J., and Tao, X.: Visible-light-response iodine-doped titanium dioxide nanocrystals for dye-sensitized solar cells. J. Mater. Chem. 21, 3877 (2011).Google Scholar
Tian, H., Hu, L., Zhang, C., Chen, S., Sheng, J., Mo, L., Liu, W., and Dai, S.: Enhanced photovoltaic performance of dye-sensitized solar cells using a highly crystallized mesoporous TiO2 electrode modified by boron doping. J. Mater. Chem. 21, 863 (2011).Google Scholar
Iwamoto, S., Sazanami, Y., Inoue, M., Inoue, T., Hoshi, T., Shigaki, K., Kaneko, M., and Maenosono, A.: Fabrication of dye-sensitized solar cells with an open-circuit photovoltage of 1 V. ChemSusChem 1, 401 (2008).Google Scholar
Liu, Q.: Photovoltaic performance improvement of dye-sensitized solar cells based on Mg-doped TiO2 thin films. Electrochim. Acta 129, 459 (2014).Google Scholar
Zhang, J., Zhao, Z., Wang, X., Yu, T., Guan, J., Yu, Z., Li, Z., and Zou, Z.: Increasing the oxygen vacancy density on the TiO2 surface by La-doping for dye-sensitized solar cells. J. Phys. Chem. C 114, 18396 (2010).Google Scholar
Yahav, S., Rühle, S., Greenwald, S., Barad, H.N., Shalom, M., and Zaban, A.: Strong efficiency enhancement of dye-sensitized solar cells using a La-modified TiCl4 treatment of mesoporous TiO2 electrodes. J. Phys. Chem. C 115, 21481 (2011).Google Scholar
Tamboli, S.H., Patil, R.B., Kamat, S.V., Puri, V., and Puri, R.K.: Modification of optical properties of MgO thin films by vapour chopping. J. Alloys Compd. 477, 855 (2009).Google Scholar
Manju, J. and Joseph Jawhar, S.: Facile synthesis and characterization of Ti(1−x)CuxO2 nanoparticles for high efficiency dye sensitized solar cell applications. Opt. Mater. 69, 119 (2017).Google Scholar
Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).Google Scholar
Riaz, A., Qi, H., Fang, Y., Xu, J., Zhou, C., Jin, Z., Hong, Z., Zhi, M., and Liu, Y.: Enhanced intrinsic photocatalytic activity of TiO2 electrospun nanofibers based on temperature assisted manipulation of crystal phase ratios. J. Mater. Res. 31, 3036 (2016).Google Scholar
Yan, Y., Chen, T., Zou, Y., and Wang, Y.: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31, 1383 (2016).Google Scholar
Challagulla, S. and Roy, S.: The role of fuel to oxidizer ratio in solution combustion synthesis of TiO2 and its influence on photocatalysis. J. Mater. Res. 1, 2764 (2017).Google Scholar
Saravanan, R.S.S., Pukazhselvan, D., and Mahadevan, C.K.: Investigation on the synthesis and quantum confinement effects of pure and Mn2+ added Zn1−xCdxS nanocrystals. J. Alloys Compd. 509, 4065 (2011).Google Scholar
Saravanan, R.S.S., Meena, M., Pukazhselvan, D., and Mahadevan, C.K.: Structural, optical and electrical characterization of Mn2+ and Cd2+ doped/co-doped PbS nanocrystals. J. Alloys Compd. 627, 69 (2015).CrossRefGoogle Scholar
Burnside, S.D., Shklover, V., Barbé, C., Comte, P., Arendse, F., and Brooks, K.: Self-organization of TiO2 nanoparticles in thin films. Chem. Mater. 10, 2419 (1998).Google Scholar
Anmadi, M.S. and Fattahi, A.: On the binding of Mg2+, Ca2+, Zn2+, and Cu+ metal cations to 2′-deoxyguanosine: Changes on sugar puckering and strength of the glycosidic bond. Sci. Iran. 18, 1343 (2011).Google Scholar
Holland, T.J. and Redfern, S.A.: Unit cell refinement from powder diffraction data: The use of regression diagnostics. Mineral. Mag. 61, 65 (1997).CrossRefGoogle Scholar
Patterson, A.: The scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939).Google Scholar
Williamson, G. and Hall, W.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 (1953).Google Scholar
Tripathi, A.K., Mathpal, M.C., Kumar, P., Singh, M.K., Soler, M.A.G., and Agarwal, A.: Structural, optical and photoconductivity of Sn and Mn doped TiO2 nanoparticles. J. Alloy. Comp. 622, 37 (2015).Google Scholar
Johnson, E.: Semiconductors and Semimetals (Academic Press, New York, 1967).Google Scholar
Chetri, P., Basyach, P., and Choudhury, A.: Structural, optical and photocatalytic properties of TiO2/SnO2 and SnO2/TiO2 core–shell nanocomposites: An experimental and DFT investigation. Chem. Phys. 434, 1 (2014).Google Scholar
Diwald, O., Thompson, T.L., Goralski, E.G., Walckand, S.D., and Yates, J.T.: The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals. J. Phys. Chem. B 108, 52 (2004).Google Scholar
Enyashin, A.N. and Seifert, G.: Structure, stability and electronic properties of TiO2 nanostructures. Phys. Status Solidi 242, 1361 (2005).Google Scholar
Nagaveni, K., Hegde, M.S., Ravishankar, N., Subbanna, G.N., and Madras, G.: Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20, 2900 (2004).Google Scholar
López, R. and Gómez, R.: Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. J. Sol–Gel Sci. Technol. 61, 1 (2011).Google Scholar
Madhusudan Reddy, K., Manorama, S.V., and Ramachandra Reddy, A.: Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 78, 239 (2003).Google Scholar
Tauc, J., Grigorovici, R., and Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627 (1996).Google Scholar
Khan, M.M., Ansari, S.A., Pradhan, D., Ansari, M.O., Han, D.H., Lee, J., and Cho, M.H.: Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A 2, 637 (2014).Google Scholar
Pal, M., Pal, U., Jiménez, J.M.G.Y., and Pérez-Rodríguez, F.: Effects of crystallization and dopawnt concentration on the emission behavior of TiO2:Eu nanophosphors. Nanoscale Res. Lett. 7, 1 (2012).Google Scholar
Tripathi, A.K., Singh, M.K., Mathpal, M.C., Mishra, S.K., and Agarwal, A.: Study of structural transformation in TiO2 nanoparticles and its optical properties. J. Alloys Compd. 549, 114 (2013).Google Scholar
Gondala, M.A., Ilyas, A.M., Baiga, U., and Fasasia, T.A.: Facile synthesis of silicon carbide–titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification. Appl. Surf. Sci. 378, 8 (2016).Google Scholar
Xie, Y., Huang, N., You, S., Liu, Y., Sebo, B., and Liang, L.: Improved performance of dye-sensitized solar cells by trace amount Cr-doped TiO2 photoelectrodes. J. Power Sources 224, 168 (2013).Google Scholar