Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T21:14:48.925Z Has data issue: false hasContentIssue false

Synthesis of large scale MoS2 for electronics and energy applications

Published online by Cambridge University Press:  11 April 2016

Nitin Choudhary
Affiliation:
Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76207, USA
Mumukshu D. Patel
Affiliation:
Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76207, USA
Juhong Park
Affiliation:
Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76207, USA
Ben Sirota
Affiliation:
Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76207, USA
Wonbong Choi*
Affiliation:
Department of Materials Science and Engineering and Department of Mechanical and Energy Engineering, University of North Texas, Denton, Texas 76207, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Layered molybdenum disulfide (MoS2) has attracted great attention owing to its unique properties. However, synthesizing large area thin film with high crystal quality and uniformity remains a challenge. The present study explores large scale MoS2 growth methods, i.e., two-step method of sputtering-chemical vapor deposition and direct sputtering method, and applies them to fabricate field effect transistors and supercapacitors, respectively. The thickness modulated MoS2 films by two-step method exhibited high field effect mobility [∼12.24 cm2/(V s)] and current on/off ratio (∼106). The direct sputtering of MoS2 demonstrated excellent electrochemical performance with a high capacitance (∼30 mF/cm2) and cyclic stability upto 5000 cycles. Our growth methods reported here for the large scale MoS2 with high uniformity can trigger the development of several important technologies in two-dimensional materials.

Type
Invited Reviews
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Late, D.J., Rout, C.S., Chakravarty, D., and Ratha, S.: Emerging energy applications of two-dimensional layered materials. Can. Chem. Trans. 3, 118 (2015).Google Scholar
Park, J., Jaeckel, B., and Parkinson, B.: Fabrication and investigation of nanostructures on transition metal dichalcogenide surfaces using a scanning tunneling microscope. Langmuir 22, 5334 (2006).CrossRefGoogle ScholarPubMed
Chhowalla, M., Shin, H.S., Eda, G., Li, L., Loh, K.P., and Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263 (2013).Google Scholar
Ganatra, R. and Zhang, Q.: Few-layer MoS2: A promising layered semiconductor. ACS Nano 8, 4074 (2014).CrossRefGoogle ScholarPubMed
Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutiérrez, H.R., Heinz, T.F., Hong, S.S., Huang, J., and Ismach, A.F.: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898 (2013).Google Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011).Google Scholar
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., and Kis, A.: Ultrasensitive photodetectors based on monolayer MoS2 . Nat. Nanotechnol. 8, 497 (2013).Google Scholar
Vabbina, P., Choudhary, N., Chowdhury, A., Sinha, R., Karabiyik, M., Das, S., Choi, W., and Pala, N.: Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction. ACS Appl. Mater. Interfaces 7, 15206 (2015).Google Scholar
Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).Google Scholar
Wang, H., Lu, Z., Xu, S., Kong, D., Cha, J.J., Zheng, G., Hsu, P.C., Yan, K., Bradshaw, D., Prinz, F.B., and Cui, Y.: Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. U. S. A. 110, 19701 (2013).CrossRefGoogle ScholarPubMed
Nicolosi, V., Chhowalla, M., Kanatzidis, M.G., Strano, M.S., and Coleman, J.N.: Liquid exfoliation of layered materials. Science 340, 1226419 (2013).Google Scholar
Das, S., Kim, M., Lee, J., and Choi, W.: Synthesis, properties, and applications of 2-D materials: A comprehensive review. Crit. Rev. Solid State Mater. Sci. 39, 231 (2014).Google Scholar
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).Google Scholar
van der Zande, A.M., Huang, P.Y., Chenet, D.A., Berkelbach, T.C., You, Y., Lee, G-H., Heinz, T.F., Reichman, D.R., Muller, D.A., and Hone, J.C.: Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554 (2013).Google Scholar
Choudhary, N., Kharat, D., and Kaur, D.: Structural, electrical and mechanical properties of magnetron sputtered NiTi/PZT/TiO x thin film heterostructures. Surf. Coat. Technol. 205, 3387 (2011).Google Scholar
Bromley, R.: The lattice vibrations of the MoS2 structure. Philos. Mag. 23, 1417 (1971).Google Scholar
Mak, K.F., Lee, C., Hone, J., Shan, J., and Heinz, T.F.: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).Google Scholar
Park, J., Choudhary, N., Smith, J., Lee, G., Kim, M., and Choi, W.: Thickness modulated MoS2 grown by chemical vapor deposition for transparent and flexible electronic devices. Appl. Phys. Lett. 106, 012104 (2015).Google Scholar
Yim, C., O'Brien, M., McEvoy, N., Winters, S., Mirza, I., Lunney, J.G., and Duesberg, G.S.: Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry. Appl. Phys. Lett. 104, 103114 (2014).CrossRefGoogle Scholar
Yoon, J., Park, W., Bae, G., Kim, Y., Jang, H.S., Hyun, Y., Lim, S.K., Kahng, Y.H., Hong, W., and Lee, B.H.: Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 9, 3295 (2013).Google Scholar
Li, X.L. and Li, Y.D.: Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chem. - Eur. J. 9, 2726 (2003).CrossRefGoogle ScholarPubMed
Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P.M., and Lou, J.: Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966 (2012).Google Scholar
Choudhary, N., Park, J., Hwang, J.Y., and Choi, W.: Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Appl. Mater. Interfaces 6, 21215 (2014).Google Scholar
Zeng, Z., Yin, Z., Huang, X., Li, H., He, Q., Lu, G., Boey, F., and Zhang, H.: Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 50, 11093 (2011).Google Scholar
Yang, Y., Fei, H., Ruan, G., Xiang, C., and Tour, J.M.: Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 26, 8163 (2014).Google Scholar
Christy, R.: Sputtered MoS2 lubricant coating improvements. Thin Solid Films 73, 299 (1980).CrossRefGoogle Scholar
Muratore, C., Hu, J., Wang, B., Haque, M., Bultman, J., Jespersen, M., Shamberger, P., McConney, M., Naguy, R., and Voevodin, A.: Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Appl. Phys. Lett. 104, 261604 (2014).CrossRefGoogle Scholar
Alam, T., Wang, B., Pulavarthy, R., Haque, M., Muratore, C., Glavin, N., Roy, A.K., and Voevodin, A.A.: Domain engineering of physical vapor deposited two-dimensional materials. Appl. Phys. Lett. 105, 213110 (2014).Google Scholar
Yu, Y., Li, C., Liu, Y., Su, L., Zhang, Y., and Cao, L.: Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 3, 1866 (2013).CrossRefGoogle ScholarPubMed
Bertrand, P.: Orientation of rf-sputter-deposited MoS2 films. J. Mater. Res. 4, 180 (1989).Google Scholar
Soon, J.M. and Loh, K.P.: Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochem. Solid-State Lett. 10, A250 (2007).Google Scholar
Choudhary, N., Patel, M., Ho, Y., Dahotre, N.B., Lee, W., Hwang, J.Y., and Choi, W.: Directly deposited MoS2 thin film electrodes for high performance supercapacitors. J. Mater. Chem. A 3, 24049 (2015).Google Scholar