Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T00:56:32.043Z Has data issue: false hasContentIssue false

Synthesis of hollow porous nanospheres of hydroxyl titanium oxalate and their topotactic conversion to anatase titania

Published online by Cambridge University Press:  03 June 2011

Da Deng*
Affiliation:
Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138
Scot T. Martin
Affiliation:
Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138
Shriram Ramanathan*
Affiliation:
Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138
*
b)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

A one-step wet chemistry route has been explored to synthesize hollow hydroxyl titanium oxalate nanoscale spheres under mild experimental conditions. The hollow spheres were ∼200 nm in diameter, with a shell thickness of ∼30 nm. The nanospheres were formed by smaller aggregated colloidal subunits. The influence of temperature and solvent on the structure of the nanospheres was investigated. The formation of hollow interiors in the nanospheres may be rationalized by Ostwald ripening mechanism. Simple thermal treatment topotactically transformed the chemical composition into anatase TiO2. The high-order hollow porous spherical structure was preserved, with smaller crystalline anatase TiO2 nanoparticles as building units. Dense hydroxyl titanium oxalate nanospheres and their corresponding non-hollow porous anatase TiO2 nanospheres were also successfully achieved in suitable reaction conditions. The method and procedure reported herein may be extended in principle for the fabrication of other functional materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Caruso, F., Caruso, R.A., and Mohwald, H.: Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111 (1998).CrossRefGoogle ScholarPubMed
2.Lou, X.W., Archer, L.A., and Yang, Z.C.: Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 20, 3987 (2008).CrossRefGoogle Scholar
3.Shan, Z.W., Adesso, G., Cabot, A., Sherburne, M.P., Asif, S.A.S., Warren, O.L., Chrzan, D.C., Minor, A.M., and Alivisatos, A.P.: Ultrahigh stress and strain in hierarchically structured hollow nanoparticles. Nat. Mater. 7, 947 (2008).CrossRefGoogle ScholarPubMed
4.Goldberger, J., He, R.R., Zhang, Y.F., Lee, S.W., Yan, H.Q., Choi, H.J., and Yang, P.D.: Single-crystal gallium nitride nanotubes. Nature 422, 599 (2003).CrossRefGoogle ScholarPubMed
5.Deng, D. and Lee, J.Y.: A family of aligned C-curved nanoarches. ACS Nano 3, 1723 (2009).CrossRefGoogle ScholarPubMed
6.Dinsmore, A.D., Hsu, M.F., Nikolaides, M.G., Marquez, M., Bausch, A.R., and Weitz, D.A.: Colloidosomes: Selectively permeable capsules composed of colloidal particles. Science 298, 1006 (2002).CrossRefGoogle ScholarPubMed
7.Strohm, H. and Lobmann, P.: Porous TiO2 hollow spheres by liquid phase deposition on polystyrene latex-stabilised Pickering emulsions. J. Mater. Chem. 14, 2667 (2004).CrossRefGoogle Scholar
8.Guo, F.Q., Zhang, Z.F., Li, H.F., Meng, S.L., and Li, D.Q.: A solvent extraction route for CaF2 hollow spheres. Chem. Commun. 46, 8237 (2010).CrossRefGoogle ScholarPubMed
9.Li, J. and Zeng, H.C.: Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening. J. Am. Chem. Soc. 129, 15839 (2007).CrossRefGoogle ScholarPubMed
10.Cheng, W., Tang, K.B., Qi, Y.X., Sheng, J., and Liu, Z.P.: One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres. J. Mater. Chem. 20, 1799 (2010).CrossRefGoogle Scholar
11.Yin, X.M., Li, C.C., Zhang, M., Hao, Q.Y., Liu, S., Chen, L.B., and Wang, T.H.: One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. J. Phys. Chem. C 114, 8084 (2010).CrossRefGoogle Scholar
12.Zheng, R.B., Meng, X.W., Tang, F.Q., Zhang, L., and Ren, J.: A general, one-step and template-free route to rattle-type hollow carbon spheres and their application in lithium battery anodes. J. Phys. Chem. C 113, 13065 (2009).CrossRefGoogle Scholar
13.Yang, H.G. and Zeng, H.C.: Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B 108, 3492 (2004).CrossRefGoogle ScholarPubMed
14.Lou, X.W., Deng, D., Lee, J.Y., Feng, J., and Archer, L.A.: Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 20, 258 (2008).CrossRefGoogle Scholar
15.Deng, D. and Lee, J.Y.: Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage. Chem. Mater. 20, 1841 (2008).CrossRefGoogle Scholar
16.Li, Y.X., Chen, G., Wang, Q., Wang, X., Zhou, A.K., and Shen, Z.Y.: Hierarchical ZnS-In2S3-CuS nanospheres with nanoporous structure: Facile synthesis, growth mechanism, and excellent photocatalytic activity. Adv. Funct. Mater. 20, 3390 (2010).CrossRefGoogle Scholar
17.Liu, F.H., Xu, G.J., Wu, J.H., Cheng, Y.C., Guo, J.J., and Cui, P.: Preparation and electrorheological properties of a hydroxyl titanium oxalate suspension. Smart Mater. Struct. 18, 125015 (2009).CrossRefGoogle Scholar
18.Wen, W.J., Huang, X.X., Yang, S.H., Lu, K.Q., and Sheng, P.: The giant electrorheological effect in suspensions of nanoparticles. Nat. Mater. 2, 727 (2003).CrossRefGoogle ScholarPubMed
19.Zhang, D., Su, H.D., and Gao, H.: Study on adsorption behavior of nanosized barium-strontium titanate powder for lead ion in water using FAAS. Spectrosc. Spectr. Anal. 28, 218 (2008).Google Scholar
20.Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).CrossRefGoogle ScholarPubMed
21.Deng, D., Kim, M.G., Lee, J.Y., and Cho, J.: Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ. Sci. 2, 818 (2009).CrossRefGoogle Scholar
22.Peng, C.W., Richard-Plouet, M., Ke, T.Y., Lee, C.Y., Chiu, H.T., Marhic, C., Puzenat, E., Lemoigno, F., and Brohan, L.: Chimie douce route to sodium hydroxo titanate nanowires with modulated structure and conversion to highly photoactive titanium dioxides. Chem. Mater. 20, 7228 (2008).CrossRefGoogle Scholar
23.Choi, H.L. and Park, C.: Effect of ultrasonic treatment on ripening of titanium oxalate salt from solution. J. Mater. Sci. 34, 3591 (1999).CrossRefGoogle Scholar
24.Choy, J.H., Han, Y.S., and Kim, S.J.: Oxalate coprecipitation route to the piezoelectric Pb(Zr,Ti)O3 oxide. J. Mater. Chem. 9, 1807 (1997).CrossRefGoogle Scholar
25.Berger, T., Rodes, A., and Gomez, R.: Oxalic acid photooxidation on rutile nanowire electrodes. PCCP 12, 10503 (2010).CrossRefGoogle ScholarPubMed
26.Fang, J., Wang, F., Qian, K., Bao, H.Z., Jiang, Z.Q., and Huang, W.X.: Bifunctional N-doped mesoporous TiO2 photocatalysts. J. Phys. Chem. C 112, 18150 (2008).CrossRefGoogle Scholar
27.Thongtem, T. and Thongtem, S.: Characterization of Bi4Ti3O12 powder prepared by the citrate and oxalate coprecipitation processes. Ceram. Int. 30, 1463 (2004).CrossRefGoogle Scholar
28.Feng, X., Yang, L., and Liu, Y.: A simple one-step fabrication of micrometer-scale hierarchical TiO2 hollow spheres. Mater. Lett. 64, 2688 (2010).CrossRefGoogle Scholar
29.Zhang, S., Liu, C., Liu, Y., Zhang, Z., and Li, G.: Fabrication of micrometer-scale anatase-phase TiO2 congeries assembled with hollow spheres. J. Am. Ceram. Soc. 91, 2067 (2008).CrossRefGoogle Scholar
30.Yu, J. and Zhang, J.: A simple template-free approach to TiO2 hollow spheres with enhanced photocatalytic activity. Dalton Trans. 39, 5860 (2010).CrossRefGoogle ScholarPubMed
31.Madras, G. and McCoy, B.J.: Temperature effects during Ostwald ripening. J. Chem. Phys. 119, 1683 (2003).CrossRefGoogle Scholar
32.Liu, B. and Zeng, H.C.: Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. Small 1, 566 (2005).CrossRefGoogle ScholarPubMed
33.Roberts, K.L. and Markel, E.J.: Generation of Mo2N nanoparticles from topotactic Mo2N crystallites. J. Phys. Chem. 98, 4083 (1994).CrossRefGoogle Scholar
34.Kolmakov, A., Zhang, Y.X., and Moskovits, M.: Topotactic thermal oxidation of Sn nanowires: Intermediate suboxides and core-shell metastable structures. Nano Lett. 3, 1125 (2003).CrossRefGoogle Scholar
35.Liu, S.M., Gan, L.M., Liu, L.H., Zhang, W.D., and Zeng, H.C.: Synthesis of single-crystalline TiO2 nanotubes. Chem. Mater. 14, 1391 (2002).CrossRefGoogle Scholar
36.Liu, L., Qian, J.S., Li, B., Cui, Y.M., Zhou, X.F., Guo, X.F., and Ding, W.P.: Fabrication of rutile TiO2 tapered nanotubes with rectangular cross-sections via anisotropic corrosion route. Chem. Commun. 46, 2402 (2010).CrossRefGoogle ScholarPubMed
37.Liu, B. and Aydil, E.S.: Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985 (2009).CrossRefGoogle ScholarPubMed
38.Zhong, Z.Y., Yin, Y.D., Gates, B., and Xia, Y.N.: Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv. Mater. 12, 206 (2000).3.0.CO;2-5>CrossRefGoogle Scholar
39.Erkov, V.G., Devyatova, S.F., Molodstova, E.L., Malsteva, T.V., and Yanovskii, U.A.: Si-TiO2 interface evolution at prolonged annealing in low vacuum or N2O ambient. Appl. Surf. Sci. 166, 51 (2000).CrossRefGoogle Scholar
40.Zhang, J.Y., Boyd, I.W., O’Sullivan, B.J., Hurley, P.K., Kelly, P.V., and Senateur, J.P.: Nanocrystalline TiO2 films studied by optical, XRD and FTIR spectroscopy. J. Non-Cryst. Solids 303, 134 (2002).CrossRefGoogle Scholar