Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T19:23:15.120Z Has data issue: false hasContentIssue false

Synthesis of Fe-filled carbon nanocapsules by an electric plasma discharge in an ultrasonic cavitation field of liquid ethanol

Published online by Cambridge University Press:  03 March 2011

Ruslan Sergiienko*
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aobaku, Sendai 980-8577, Japan
Etsuro Shibata
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aobaku, Sendai 980-8577, Japan
Zentaro Akase
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aobaku, Sendai 980-8577, Japan
Hiroyuki Suwa
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aobaku, Sendai 980-8577, Japan
Daisuke Shindo
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aobaku, Sendai 980-8577, Japan
Takashi Nakamura
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aobaku, Sendai 980-8577, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanoparticles of iron carbides (Fe3C and χ-Fe2.5C) wrapped in multilayered graphitic sheets were synthesized by a developed method in which an electric plasma was generated in an ultrasonic cavitation field containing thousands of tiny activated bubbles in liquid ethanol. Annealing changed the phase composition, structure, and size of the carbon nanocapsules as most of the iron carbides decomposed into the α-Fe phase and graphite. Powder samples annealed at 873 and 973 K have maximal saturation magnetization values equal to 80.6 and 83.4 A m2/kg, respectively, which is approximately 40% of the value of bulk iron. Using this method, it will be possible to synthesize nanoparticles of a metal of choice encapsulated by graphite shells by selecting appropriate materials for the ultrasonic tip and electrodes.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hanayama, M., Ideno, T. Magnetic recording medium. Japan Patent: JP 06-152793.Google Scholar
2.Kuznetsov, A.A., Filippov, V.I., Kuznetsov, O.A., Gerlivanov, V.G., Dobrinsky, E.K., Malashin, S.I.: New ferro-carbon adsorbents for magnetically guided transport of anti-cancer drugs. J. Magn. Magn. Mater. 194, 22 (1999).CrossRefGoogle Scholar
3.Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Sumiyama, K., Suzuki, K., Kasuya, A., Nishina, Y.: Carbon nanocapsules encaging metals and carbides. J. Phys. Chem. Solids 54(12), 1849 (1993).CrossRefGoogle Scholar
4.Jiao, J., Seraphin, S., Wang, X., Withers, J.C.: Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanoparticles. J. Appl. Phys. 80(1), 103 (1996).CrossRefGoogle Scholar
5.Sergiienko, R., Shibata, E., Akase, Z., Suwa, H., Nakamura, T., Shindo, D.: Carbon encapsulated iron carbide nanoparticles synthesized in ethanol by an electric plasma discharge in an ultrasonic cavitation field. Mater. Chem. Phys. 98, 34 (2006).CrossRefGoogle Scholar
6.Neppiras, E.A.: Acoustic cavitation. Phys. Rep. 61, 159 (1980).CrossRefGoogle Scholar
7.Didenko, Y.T., III, W.B. McNamara, Suslick, K.S.: Hot spot conditions during cavitation in water. J. Am. Chem. Soc. 121, 5817 (1999).CrossRefGoogle Scholar
8.McNamara, W.B. IIIDidenko, Y.T., Suslick, K.S.: Sonoluminescence temperatures during multi-bubble cavitation. Nature 401, 772 (1999).CrossRefGoogle Scholar
9.Shibata, E., Sergiienko, R., Suwa, H., Nakamura, T.: Synthesis of amorphous carbon particles by an electric arc in the ultrasonic cavitation field of liquid benzene. Carbon 42, 885 (2004).CrossRefGoogle Scholar
10.Sergiienko, R., Shibata, E., Suwa, H., Nakamura, T., Akase, Z., Murakami, Y., Shindo, D.: Synthesis of amorphous carbon nanoparticles and carbon encapsulated metal nanoparticles in liquid benzene by an electric plasma discharge in ultrasonic cavitation field. Ultrason. Sonochem. 13, 6 (2006).CrossRefGoogle ScholarPubMed
11.Paschen, F.: Über die zum Funkenübergang in Luft, Wasserstoff and Kohlensäure bei verschiedenen Drücken erforderliche Potentialdifferenz. Weid. Ann. Phys. 37, 69 (1889).CrossRefGoogle Scholar
12.Fuhr, J., Schmidt, W.F., Sato, S.: Spark breakdown of liquid hydrocarbons. I. Fast current and voltage measurements of the spark breakdown in liquid n-hexane. J. Appl. Phys. 59(11), 3694 (1986).CrossRefGoogle Scholar
13.Fuhr, J., Schmidt, W.F.: Spark breakdown of liquid hydrocarbons. II. Temporal development of the electric spark resistance in n-pentane, n-hexane, 2,2 dimethylbutane, and n-decane. J. Appl. Phys. 59(11), 3702 (1986).CrossRefGoogle Scholar
14.Zhang, J., Ostrovski, O.: Cementite formation in CH4-H2-Ar gas mixture and cementite stability. ISIJ Int. 41(4), 333 (2001).CrossRefGoogle Scholar
15.Hayashi, T., Hirono, S., Tomita, M., Umemura, S.: Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Nature 381, 772 (1996).CrossRefGoogle Scholar
16.Mamezaki, O., Adachi, H., Tomita, S., Fujii, M., Hayashi, S.: Thin films of carbon nanocapsules and onion-like graphitic particles prepared by the cosputtering method. Jpn. J. Appl. Phys. 39, 6680 (2000).CrossRefGoogle Scholar
17.Pearse, R.W.B., Gaydon, A.G.: The Identification of Molecular Spectra, 4th ed. (Chapman and Hall, London, 1976).CrossRefGoogle Scholar
18.Striganov, A.R., Sventitskii, N.S.: Tables of Spectral Lines of Neutral and Ionized Atoms (IFI/Plenum, New York, 1968).CrossRefGoogle Scholar
19.Yelsukov, E.P., Ul’yanov, A.I., Zagainov, A.V., Arsent’yeva, N.B.: Hysteresis magnetic properties of the Fe(100 − x)C(x); x = 5-25 at.% nanocomposites as-mechanically alloyed and after annealing. J. Magn. Magn. Mater. 258–259, 513 (2003).CrossRefGoogle Scholar
20.Zhang, Z.D., Zheng, J.G., Skorvanek, I., Kovac, J., Yu, J.L., Dong, X.L., Li, Z.J., Jin, S.R., Zhao, X.G., Liu, W.: Synthesis, characterization, and magnetic properties of carbon- and boron-oxide-encapsulated iron nanocapsules. J. Nanosci. Nanotechol. 1(2), 153 (2001).CrossRefGoogle ScholarPubMed
21.Hihara, T., Onodera, H., Sumiyama, K., Suzuki, K., Kasuya, A., Nishina, Y., Saito, Y., Yoshikawa, T., Okuda, M.: Magnetic properties of iron in nanocapsules. Jpn. J. Appl. Phys. 33, L24 (1994).CrossRefGoogle Scholar
22.Leslie-Pelecky, D.L., Rieke, R.D.: Magnetic properties of nanostructured materials. Chem. Mater. 8, 1770 (1996).CrossRefGoogle Scholar