Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T02:39:42.661Z Has data issue: false hasContentIssue false

Synthesis of Eu-doped (Gd,Y)2O3 transparent optical ceramic scintillator

Published online by Cambridge University Press:  03 March 2011

Young Kwan Kim
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Kusong-dong, Yusong, Taejon 305-701, Korea
Ho Kyung Kim
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Kusong-dong, Yusong, Taejon 305-701, Korea
Do Kyung Kim*
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Kusong-dong, Yusong, Taejon 305-701, Korea
Gyuseong Cho
Affiliation:
Department of Quantum and Nuclear Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Kusong-dong, Yusong, Taejon 305-701, Korea
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A novel process for transparent oxide ceramic scintillator with a composition of Gd1.94-x Yx Eu0.06O3 was developed. The process consists of a glycine–nitrate combustion synthesis of nano-sized starting powder and subsequent controlled sintering and annealing steps. The organic molecules remaining in the as-combusted powder were efficiently removed by the combined heat-treatment at vacuum and air atmospheres. Hot-pressed ceramic scintillators show transparent optical state and high light output. Transparent optical ceramic scintillator with a high content of Gd (up to 80 mol%) was fabricated by the process. The measured light output of Gd1.54Y0.4Eu0.06O3 ceramic scintillator was about two times higher that that of CdWO4 single crystal.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Moses, W.W.: Nucl. Instrum. Methods A 487, 123 (2002).CrossRefGoogle Scholar
2Greskovich, C.D. and Duclos, S.: Ann. Rev. Mater. Sci. 27, 69 (1997).CrossRefGoogle Scholar
3Tsoukala, V.G. and Greskovich, C.D.U.S. Patent No. 5 318 722 (June 7, 1994).Google Scholar
4Blasse, G., Grabmaier, B.C. and Ostertag, M.: J. Alloy. Compd. 200, 17 (1993).CrossRefGoogle Scholar
5Yamada, H., Suzuki, A., Uchida, Y., Yoshida, M. and Yamamoto, H.: J. Electrochem. Soc. 136, 2713 (1989).CrossRefGoogle Scholar
6Leppert, J. and Rossner, W.U.S. Patent No. 5 296 163 (March 22, 1994).Google Scholar
7Greskovich, C.D., Cusano, D.A. and DiBianea, F.A.U.S. Patent No. 4 466 930 (August 21, 1984).Google Scholar
8Lempicki, A., Brecher, C., Szupryczynski, P., Lingertat, H., Nagarkar, V.V., Tipnis, S.V. and Miller, S.R.: Nucl. Instrum. Methods A 488, 579 (2002).CrossRefGoogle Scholar
9Bhaduri, S. and Bhaduri., S.B.: Nanostructured Mater. 11, 469 (1999).CrossRefGoogle Scholar
10Kim, W-J., Park, J.Y., Oh, S.J., Kim, Y.S., Hong, G-W. and Kuk, I-H.: J. Mater. Sci. Lett. 18, 411 (1999).CrossRefGoogle Scholar
11Zych, E., Hreniak, D. and Strek, W.: J. Alloy. Compd. 341, 385 (2002).CrossRefGoogle Scholar
12Chick, L.A., Pederson, L.R., Maupin, G.D., Bates, J.L., Thomas, L.E. and Exarhos, G.J.: Mater. Lett. 10, 6 (1990).CrossRefGoogle Scholar
13Jain, S.R. and Adiga, K.C.: Combution and Flame 40, 71 (1981).CrossRefGoogle Scholar
14Sun, L., Yao, J., Liu, C., Liao, C. and Yan, C.: J. Lumin. 87–89, 447 (2000).CrossRefGoogle Scholar
15Alpert, N.L., Keiser, W.E. and Szymanski, H.A.: IR Theory and Practice of Infrared Spectroscopy (Plenum Press, New York, 1970).Google Scholar
16Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley-Interscience, New York, 1978).Google Scholar
17Baran, J., Barnes, A.J. and Ratajczak, H.: Spectrochim. Acta. A 51, 197 (1995).CrossRefGoogle Scholar
18Ye, T., Guiwen, Z., Weiping, Z. and Shangda, X.: Mater. Res. Bull. 32, 501 (1997).CrossRefGoogle Scholar
19Devereux, M., Jackman, M., McCann, M. and Casey, M.: Polyhedron 17, 153 (1998).CrossRefGoogle Scholar
20Kovacs, L., Erdei, S. and Capelletti, R.: Solid State Commun. 111, 95 (1999).CrossRefGoogle Scholar