Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T01:36:04.529Z Has data issue: false hasContentIssue false

Synthesis of dense β, β″–alumina ceramics by reaction sintering of Na2O-containing alumina compact

Published online by Cambridge University Press:  08 February 2011

Yoshihiro Hirata
Affiliation:
Department of Applied Chemistry, Faculty of Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890, Japan
Takeshi Izaiku
Affiliation:
Department of Applied Chemistry, Faculty of Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890, Japan
Yoshimi Ishihara
Affiliation:
Department of Applied Chemistry, Faculty of Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890, Japan
Get access

Abstract

Reaction sintering in the Na2O–MgO–Al2O3 system was studied with α–alumina green compacts containing Na2O and MgO in the pores of a controlled structure to produce β, β″–alumina polycrystalline at low temperatures. HCOONa and (CH3COO)2Mg were infiltrated into the alumina powder compacts (average particle size 0.2 μm) with relative densities of 51 to 66% at the compositions of Na2O/MgO/Al2O3 = 1/0.10/4.0–7.6. The alumina powder compacts were formed by filtration of the aqueous colloidal suspensions through gypsum molds. Phase change from α to β, β″–alumina proceeded fast at low temperatures in the samples with high Na2O/Al2O3 ratios. However, no significant densification occurred below 1500 °C owing to the volume increase of powder compacts associated with the phase change of α to β, β″–alumina. At 1600 °C, the green compacts were rapidly densified to relative densities above 99%. This densification was related to the liquid phase sintering based on the partial decomposition of β″–alumina. The dense β, β″–alumina polycrystalline consisted of needle-like grains of 2–5 μm in length and 1–2 μm in width.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Whittingham, M. S. and Huggins, R. A., J. Chem. Phys. 54, 414416 (1971).CrossRefGoogle Scholar
2Yao, Y-F.Yu and Kummer, J. T., J. Inorg. Nucl. Chem. 29, 24532475 (1967).Google Scholar
3Wang, J. C., Gaffari, M., and Choi, S., J. Chem. Phys. 63, 772778 (1975).CrossRefGoogle Scholar
4Sato, H. and Kikuchi, R., J. Chem. Phys. 55, 677702 (1971).CrossRefGoogle Scholar
5aRoth, W. L., in Solid Electrolytes, General Principles, Characterization, Materials, Applications, edited by Hagenmuller, P. and Gool, W. V. (Academic Press, 1978), pp. 4558.Google Scholar
bPowers, R. W. and Mitoff, S. P., in Solid Electrolytes, General Principles, Characterization, Materials, Applications, edited by Hagenmuller, P. and Gool, W. V. (Academic Press, 1978), pp. 123144.Google Scholar
cCollongues, R., Thery, J., and Boilot, J. P., in Solid Electrolytes, General Principles, Characterization, Materials, Applications, edited by Hagenmuller, P. and Gool, W. V. (Academic Press, 1978), pp. 253276.Google Scholar
6Stevens, R. and Binner, J. G. P., J. Mater. Sci. 19, 695715 (1984).CrossRefGoogle Scholar
7Farrington, G. C. and Briant, J. L., in Fast Ion Transport in Solids, edited by Vashishta, P., Mundy, J. N., and Shenoy, G. K. (Elsevier North Holland Inc., 1979), pp. 395400.Google ScholarPubMed
8aOrmrod, S. E. and Kirk, D. L., J. Phys. D, Appl. Phys. 10, 14971507 (1977).CrossRefGoogle Scholar
bOrmrod, S. E. and Kirk, D. L., J. Phys. D, Appl. Phys. 10, 17691780 (1977).CrossRefGoogle Scholar
9Virkar, A. V., Miller, G. R., and Gordon, R. S., J. Am. Ceram. Soc. 61, 250252 (1978).CrossRefGoogle Scholar
10Dunn, B., Farrington, G. C., and Thomas, J. O., Mater. Res. Bull. XIV, 2230 (1989).Google Scholar
11McEntire, B. J., Miller, G. R., and Gordon, R. S., Am. Ceram. Soc. Bull. 63, 792802 (1984).Google Scholar
12Pett, R. A., Theodore, A. N., Tennenhouse, G. J., and Runkle, F. D., Am. Ceram. Soc. Bull. 64, 589592 (1985).Google Scholar
13Yamaguchi, G. and Suzuki, K., Bull. Chem. Soc. Jpn. 41, 9399 (1968).CrossRefGoogle Scholar
14DeVries, R. C. and Roth, W. L., J. Am. Ceram. Soc. 52, 364369 (1969).CrossRefGoogle Scholar
15Peteres, C. R., Bettman, M., Moore, J. W., and Glick, M. D., Acta Crystallogr. B27, 18261834 (1971).CrossRefGoogle Scholar
16Lange, F. F., J. Am. Ceram. Soc. 72, 315 (1989).CrossRefGoogle Scholar
17Aksay, I. A., in Ceramics: Today and Tomorrow, edited by Naka, S., Soga, N., and Kume, S. (The Ceram. Soc. Japan, 1986), pp. 7185.Google Scholar
18Sheppard, L. M., Am. Ceram. Soc. Bull. 68, 979985 (1989).Google Scholar
19Hirata, Y. and Aksay, I. A., in Ceramic Microstructures '86, Role of Interfaces, edited by Pask, J. A. and Evans, A. G. (Plenum Press, 1987), pp. 611622.CrossRefGoogle Scholar
20Hirata, Y., Aksay, I. A., Kurita, R., Hori, S., and Kaji, H., in Ceramic Transactions, Vol. 6, Mullite and Mullite Matrix Composites, edited by Sōmiya, S., Davis, R. F., and Pask, J. A. (The Am. Ceram. Soc, 1990), pp. 323338.Google Scholar
21Hirata, Y., Matsushita, S., Nakagama, S., Ishihara, Y., and Hori, S., J. Ceram. Soc. Jpn. 97, 881887 (1989).CrossRefGoogle Scholar
22Hirata, Y., Nakagama, S., and Ishihara, Y., J. Mater. Res. 5, 640646 (1990).CrossRefGoogle Scholar
23Hirata, Y., Aksay, I. A., and Kikuchi, R., J. Ceram. Soc. Jpn. 98, 126135 (1990).CrossRefGoogle Scholar
24Hirata, Y., Nakagama, S., and Ishihara, Y., J. Ceram. Soc. Jpn. 98, 316321 1990).CrossRefGoogle Scholar
25Hirata, Y., Haraguchi, I., and Ishihara, Y., J. Ceram. Soc. Jpn. 98, 951956 (1990).CrossRefGoogle Scholar
26 ASTM card, (a) No. 10–173, (b) No. 21–1096, and (c) No. 19–1173.Google Scholar
27Zhao, J. and Harmer, M. P., J. Am. Ceram. Soc. 71, 530539 (1988).CrossRefGoogle Scholar
28Liniger, E. and Raj, R., J. Am. Ceram. Soc. 70, 843849 (1987).CrossRefGoogle Scholar
29Kingery, W. D., Bowen, H. K., and Uhlman, D. R., Introduction to Ceramics, 2nd ed. (John Wiley & Sons, 1976), pp. 448515.Google Scholar