Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T23:53:23.641Z Has data issue: false hasContentIssue false

Synthesis of AlN nanowhiskers

Published online by Cambridge University Press:  31 January 2011

K.Y. Wang
Affiliation:
CFAW-Ceramics LLC, Baton Rouge, Louisiana 70820
P.G. Zhang
Affiliation:
Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803
L.C. Zhang
Affiliation:
Department of Chemical Materials and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269
S.M. Guo*
Affiliation:
Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The synthesis of hexagonal aluminum nitride (AlN) nanoparticles and nanowhiskers by using direct nitridation of aluminum powders is presented in this work. After mixing aluminum powders with carbon and silica (derived from rice bran ashes) at a cryogenic temperature, the homogeneous mixture was heat treated/examined in a differential scanning calorimeter/tube furnace under N2 atmosphere. Under a maximum temperature of 1450 °C in N2 atmosphere, the as-milled aluminum-carbon-silica powder mixtures transformed completely into AlN nanoparticles and nanowhiskers with a trace of graphite. The formation mechanisms for AlN nanoparticles and nanowhiskers are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Slack, G.A., Tanzilli, R.A., Pohl, R.O., Vandersande, J.W.The intrinsic thermal conductivity of AlN. J. Phys. Chem. Solids 48, 641 (1987)CrossRefGoogle Scholar
2.Wu, Q., Hu, Z., Zhang, X.Z., Lu, Y.N., Huo, K.F., Deng, S.Z., Xu, N.S., Shen, B., Zhang, R., Chen, Y.Extended vapor–liquid–solid growth and field emission properties of aluminium nitride nanowires. J. Mater. Chem. 13, 2024 (2003)CrossRefGoogle Scholar
3.Okada, T., Toriyama, M., Kanazaki, S.Synthesis of aluminum nitride sintered bodies using the direct nitridation of Al compacts. J. Eur. Ceram. Soc. 20, 783 (2000)CrossRefGoogle Scholar
4.Qiu, Y., Gao, L.Nitridation reaction of aluminium powder in flowing ammonia. J. Eur. Ceram. Soc. 23, 2015 (2003)CrossRefGoogle Scholar
5.Kameshima, Y., Irie, M., Yasumori, A., Okada, K.Mechanochemical effect on low temperature synthesis of AlN by direct nitridation method. Solid State Ionics 172, 185 (2004)CrossRefGoogle Scholar
6.Cho, Y.W., Charles, J.A.Synthesis of nitrogen ceramic powders by carbothermal reduction and nitridation. Part 3. Aluminum nitride. Mater. Sci. Technol. 7, 495 (1991)CrossRefGoogle Scholar
7.Kuang, J.C., Zhang, C.R., Zhou, X.G., Wang, S.Q.Synthesis of high thermal conductivity nano-scale aluminum nitride by a new carbothermal reduction method from combustion precursor. J. Cryst. Growth 256, 288 (2003)CrossRefGoogle Scholar
8.Tayor, K.M., Lenie, C.Some properties of aluminum nitride. J. Electrochem. Soc. 107, 308 (1960)Google Scholar
9.Chen, H.T., Wu, X.L., Xiong, X., Zhang, W.C., Xu, L.L., Zhu, J., Chu, P.K.Formation mechanism and photoluminescence of AlN nanowhiskers. J. Phys. D: Appl. Phys. 41, 025101 (2008)CrossRefGoogle Scholar
10.Paul, R.K., Lee, K.H., Lee, B.T., Song, H.Y.Formation of AlN nanowires using Al powder. Mater. Chem. Phys. 112, 562 (2008)CrossRefGoogle Scholar
11.Wang, H.L., Lv, H.M., Chen, G.D., Ye, H.G.Synthesis of hexagonal AlN microbels at low temperature. J. Alloys Compd. 477, 580 (2009)CrossRefGoogle Scholar
12.Chandrasekhar, S., Satyanarayana, K.G., Pramada, P.N., Raghavan, P., Gupta, T.N.Processing, properties and applications of reactive silica from rice husk—An overview. J. Mater. Sci. 38, 3159 (2003)CrossRefGoogle Scholar
13.Sterling, C.Crystallina silica in plants. Am. J. Bot. 54, 840 (1967)CrossRefGoogle Scholar
14.Houston, D.F.Rice hullsRice Chemistry and Technology (American Association of Cereal Chemists, St. Paul, MN 1972)301Google Scholar
15.Sujirote, K., Leangsuwan, P.Silicon carbide formation from pretreated rice husks. J. Mater. Sci. 38, 4739 (2003)CrossRefGoogle Scholar
16.Martinez, V., Valencia, M.F., Cruz, J., Mejia, J.M., Chejne, F.Production of β-SiC by pyrolysis of rice husk in gas furnaces. Ceram. Int. 32, 891 (2006)CrossRefGoogle Scholar
17.Luton, M.J., Jayanth, C.S., Disko, M.M., Matras, S., Vallone, J.Cryomilling of nano-phase dispersion strengthened aluminumMulticomponent Ultrafine Microstructures edited by L.E. McCandlish, D.E. Polk, R.W. Siegel, and B.H. Kear (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA 1989)79Google Scholar
18.Zhou, F., Lee, J., Dallek, S., Lavernia, E.J.High grain size stability of nanocrystalline Al prepared by mechanical attrition. J. Mater. Res. 16, 3451 (2001)CrossRefGoogle Scholar
19.Dai, Y., Pei, X.M., Nan, C.W.Synthesis of aluminum nitride nanocrystals and platelets. Key Eng. Mater. 249, 155 (2003)CrossRefGoogle Scholar
20.Hashman, T.W., Pratsinis, S.E.Thermodynamics of vapor synthesis of AlN by nitridation of aluminum and its halides. J. Am. Ceram. Soc. 75, 920 (1992)CrossRefGoogle Scholar
21.Wang, K.Y., Zhang, P., Guo, S.M. (unpublished results, 2010)Google Scholar
22.Fu, R.L., Zhou, H.P., Chen, L., Wu, Y.Synthesis of aluminum nitride fibers from aluminum silicate fibers by carbothermal reduction method. J. Mater. Sci. 34, 3605 (1999)CrossRefGoogle Scholar
23.Fu, R.L., Zhou, H.P., Chen, L., Wu, Y.Morphologies and growth mechanisms of aluminum nitride whiskers synthesized by carbothermal reduction. Mater. Sci. Eng., A 266, 44 (1999)CrossRefGoogle Scholar