Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T15:55:37.504Z Has data issue: false hasContentIssue false

Synthesis of γ-(Al1-xFex)2O3 solid solutions from oxinate precursors and formation of carbon nanotubes from the solid solutions using methane or ethylene as carbon source

Published online by Cambridge University Press:  31 January 2011

Valdirene G. de Resende
Affiliation:
Department of Subatomic and Radiation Physics, University of Ghent, B-9000 Gent, Belgium; and CIRIMAT UMR CNRS 5085/LCMIE, Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux, Université Paul-Sabatier, 31062 Toulouse cedex 9, France
Anne Cordier
Affiliation:
CIRIMAT UMR CNRS 5085/LCMIE, Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux, Université Paul-Sabatier, 31062 Toulouse cedex 9, France
Eddy De Grave
Affiliation:
Department of Subatomic and Radiation Physics, University of Ghent, B-9000 Gent, Belgium
Alicia Weibel
Affiliation:
CIRIMAT UMR CNRS 5085/LCMIE, Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux, Université Paul-Sabatier, 31062 Toulouse cedex 9, France
Alain Peigney
Affiliation:
CIRIMAT UMR CNRS 5085/LCMIE, Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux, Université Paul-Sabatier, 31062 Toulouse cedex 9, France
Geraldo M. da Costa
Affiliation:
Chemistry Department, Federal University of Ouro Preto, 35400-000, Ouro Preto (MG), Brazil
Christophe Laurent
Affiliation:
CIRIMAT UMR CNRS 5085/LCMIE, Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux, Université Paul-Sabatier, 31062 Toulouse cedex 9, France
Robert E. Vandenberghe
Affiliation:
Department of Subatomic and Radiation Physics, University of Ghent, B-9000 Gent, Belgium
Get access

Abstract

This work reports for the first time the synthesis of γ-(Al1-xFex)2O3 solid solutions with a high specific surface area (200-230 m2/g) by the decomposition of metal oxinate [(Al1-xFex)(C9H6ON)3] and investigated the potential of these materials as catalysts for the synthesis of carbon nanotubes by catalytic chemical vapor deposition using methane or ethylene as carbon the source. The nanocomposite powders prepared by reduction in H2-CH4 contain carbon nanotubes (CNTs), which are mostly double-walled but also contain a fair amount of undesirable carbon nanofibers, hollow carbon particles, and metal particles covered by carbon layers. Moreover, abundant metallic particles are observed to cover the surfaces of the matrix grains. By contrast, the nanocomposite powders prepared by reduction in N2-C2H4 are not fully reduced, and the CNTs are much more abundant and homogeneous. However, they are multiwalled CNTs with a significant proportion of defects. The powders were studied by several techniques including Mössbauer spectroscopy and electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Peigney, A., Laurent, Ch., Dobigeon, F., Rousset, A.: Carbon nanotubes grown in situ by a novel catalytic method. J. Mater. Res. 12, 613 1997CrossRefGoogle Scholar
2Peigney, A., Laurent, Ch., Dumortier, O., Rousset, A.: Carbon nanotubes-Fe-alumina nanocomposites. Part I: Influence of the Fe content on the synthesis of powders. J. Eur. Ceram. Soc. 18, 1995 1998CrossRefGoogle Scholar
3Laurent, Ch., Peigney, A., Rousset, A.: Synthesis of carbon nanotubes-Fe-Al2O3 nanocomposite powders by selective reduction of different Al1.8Fe0.2O3 solid solutions. J. Mater. Chem. 8, 1263 1998CrossRefGoogle Scholar
4Laurent, Ch., Peigney, A., Flahaut, E., Rousset, A.: Synthesis of carbon nanotubes-Fe-Al2O3 powders. Influence of the characteristics of the starting Al1.8Fe0.2O3 oxide solid solution. Mater. Res. Bull. 35, 661 2000CrossRefGoogle Scholar
5Costa, G.M. da, Van San, E., De Grave, E., Vandenberghe, R.E., Barrón, V., Datas, L.: Al hematites prepared by homogeneous precipitation of oxinates: Material characterization and determination of the Morin transition. Phys. Chem. Miner. 29, 122 2002CrossRefGoogle Scholar
6Barrero, C.A., Arpe, J., Sileo, E., Sánchez, L.C., Zysler, R., Saragovi, C.: Ni- and Zn-doped hematite obtained by combustion of mixed metal oxinates. Physica B (Amsterdam) 354, 27 2004CrossRefGoogle Scholar
7Saragovi, C., Arpe, J., Sileo, E., Zysler, R., Sánchez, L.C., Barrero, C.A.: Changes in the structural and magnetic properties of Ni-substituted hematite prepared from metal oxinates. Phys. Chem. Miner. 31, 625 2004CrossRefGoogle Scholar
8Vogel, A.I.: A Textbook of Quantitative Inorganic Analysis 3th ed.Longman Group Limited, London 1961 387Google Scholar
9Rajeswaran, M., Blanton, T.: Single-crystal structure determination of a new polymorph (ϵ-Alq3) of the electroluminescence OLED (organic light-emitting diode) material, tris(8-hydroxyquinoline) aluminum (Alq3). J. Chem. Crystallogr. 35, 71 2005CrossRefGoogle Scholar
10Katakura, R., Koide, Y.: Configuration-specific synthesis of the facial and meridional isomers of tris(8-hydroxyquinolinate) aluminum (Alq3). Inorg. Chem. 45, 5730 2006CrossRefGoogle ScholarPubMed
11Borrel, M., Pâris, R.: Thermogravimetric analysis of the principal metal oxinates. Anal. Chim. Acta 4,, 267 1950CrossRefGoogle Scholar
12Palanna, O.G.: Thermal studies of ferric oxinate. Chim. Acta Turc. 25, 25 1997Google Scholar
13Kumamaru, T., Notake, H., Tao, S., Okamoto, Y.: Low temperature electrothermal vaporization of an 8-quinolinolato complex of aluminum (III) for sample introduction in an inductively coupled plasma atomic emission spectrometric determination of trace aluminum. Anal. Sci. 13, 885 1997CrossRefGoogle Scholar
14Ribeiro, C.A., Crespi, M.S., Guerreiro, C.T.R., Veronezi, A.M.: Dehydratation and volatilization non isothermic kinetic of the solid state aluminum 8-hydroxyquinolinate. Eclet. Quím. 26, 185 2001CrossRefGoogle Scholar
15Devaux, X.: Nanocomposites as ceramic matrices. Systems aluminum-transition metal (iron, chromium) and aluminum iron-chromium alloys. Doctoral Thesis,Toulouse 1991 166Google Scholar
16Cordier, A., Peigney, A., De Grave, E., Flahaut, E., Laurent, Ch.: Synthesis of the metastable α-Al1.8Fe0.2O3 solid solution from precursors prepared by combustion. J. Eur. Ceram. Soc. 26, 3099 2006CrossRefGoogle Scholar
17Streitz, F.H., Mintmire, J.W.: Energetics of aluminum vacancies in gamma alumina. Phys. Rev. B 60, 773 1999CrossRefGoogle Scholar
18Wolverton, C., Hass, K.C.: Phase stability and structure of spinel-based transition aluminas. Phys. Rev. B 63, 024102 2000CrossRefGoogle Scholar
19Pinto, H.P., Nieminem, R.M., Elliott, S.D.: Ab initio study of γ-Al2O3 surfaces. Phys. Rev. B 70, 125402 2004CrossRefGoogle Scholar
20Gutiérrez, G., Taga, A., Johansson, B.: Theoretical structure determination of γ-Al2O3. Phys. Rev. B 65, 012101 2001CrossRefGoogle Scholar
21Alvarez, L.J., León, L.E.: Surface structure of cubic aluminum oxide. Phys. Rev. B 50, 2561 1994CrossRefGoogle ScholarPubMed
22Costa, G.M. da, De Grave, E., Vandenberghe, R.E.: Mössbauer studies of magnetite and Al-substituted maghemites. Hyperfine Interact. 117, 207 1998CrossRefGoogle Scholar
23Bauer-Grosse, E., Caër, G. Le, Fournes, L.: Mössbauer study of amorphous and crystallized Fe1-xCx alloys. Hyperfine Interact. 27, 297 1986CrossRefGoogle Scholar
24Bødker, F., Mørup, S.: Magnetic properties of 2 nm α-Fe particles. Hyperfine Interact. 93, 1421 1994CrossRefGoogle Scholar
25Coquay, P., Peigney, A., De Grave, E., Vandenberghe, R.E., Laurent, Ch.: Carbon nanotubes by a CCVD method. Part II: Formation of nanotubes from (Mg,Fe)O catalysts. J. Phys. Chem. B 106, 13199 2002CrossRefGoogle Scholar
26Coquay, P., De Grave, E., Vandenberghe, R.E., Dauwe, C., Flahaut, E., Laurent, Ch., Peigney, A., Rousset, A.: Mössbauer spectroscopy study of MgAl2O4-matrix nanocomposite powders containing carbon nanotubes and iron-based nanoparticles. Acta Mater. 48, 3015 2000CrossRefGoogle Scholar
27Peigney, A., Coquay, P., Flahaut, E., Vandenberghe, R.E., De Grave, E., Laurent, Ch.: A study of the formation of single-and double-walled carbon nanotubes by a CVD method. J. Phys. Chem. B 105, 9699 2001CrossRefGoogle Scholar
28Yakel, H.L.: Crystal structures of stable and metastable iron containing carbides. Int. Met. Rev. 30, 17 1985CrossRefGoogle Scholar
29Kniep, B., Constantinescu, A., Niemeier, D., Becker, K.D.: An in-situ Mössbauer study of the formation of cementite, Fe3C. Z. Anorg. Allg. Chem. 629, 1795 2003CrossRefGoogle Scholar
30Bi, X.X., Ganguly, B., Huffman, G.P., Huggins, F.E., Endo, M., Eklund, P.C.: Nanocrystalline α-Fe, Fe3C, and Fe7C3 produced by CO2 laser pyrolysis. J. Mater. Res. 8, 1666 1993CrossRefGoogle Scholar
31Weiss, R.J.: The origin of the “invar“ effect. Proc. Phys. Soc. 82, 281 1963CrossRefGoogle Scholar
32Gonser, U., Meechan, C.J., Muir, A.H., Wiedersich, H.: Determination of Néel temperatures in fcc iron. J. Appl. Phys. 34, 2373 1963CrossRefGoogle Scholar
33Warnes, L.A., King, H.W.: The low temperature magnetic properties of austenitic Fe-Cr-Ni alloys. 2. The prediction of Néel temperatures and maximum susceptibilities. Cryogenics 16, 659 1976CrossRefGoogle Scholar
34Roberts, C.S.: Effect of carbon on the volume fractions and lattice parameters of retained austenite and martensite. Trans. AIME 197, 203 1953Google Scholar
35Ron, M.: Applications of Mössbauer Spectroscopy Vol. II Academic Press, New York 1980 335–340Google Scholar
36Kachi, S., Bando, Y., Higuchi, S.: The phase transformation of iron rich iron-nickel alloy in fine particles. Jpn. J. Appl. Phys. 1, 307 1962CrossRefGoogle Scholar
37Jorio, A., Pimenta, M.A., Filho, A.G. Souza, Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Characterizing carbon nanotube samples with resonance Raman scattering. New J. Phys. 5, 1391 2003CrossRefGoogle Scholar
38Rodriguez, N.M.: A review of catalytically grown carbon nanofibers. J. Mater. Res. 8, 3233 1993CrossRefGoogle Scholar
39Laurent, Ch., Flahaut, E., Peigney, A., Rousset, A.: Metal nanoparticles for the catalytic synthesis of carbon nanotubes. New J. Chem. 22, 1229 1998CrossRefGoogle Scholar
40Hafner, J.H., Bronikowski, M.J., Azamian, B.K., Nikolaev, P., Rinzler, A.G., Colbert, D.T., Smith, K.A., Smalley, R.E.: Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 296, 195 1998CrossRefGoogle Scholar
41Flahaut, E., Peigney, A., Laurent, Ch., Rousset, A.: Synthesis of single-walled carbon nanotube-Co-MgO composite powders and extraction of the nanotubes. J. Mater. Chem. 10, 249 2000CrossRefGoogle Scholar
42Bacsa, R.R., Laurent, Ch., Peigney, A., Bacsa, W.S., Vaugien, Th., Rousset, A.: High specific surface area carbon nanotubes from catalytic chemical vapor deposition process. Chem. Phys. Lett. 323, 566 2000CrossRefGoogle Scholar
43Hernadi, K., Fonseca, A., Nagy, J.B., Siska, A., Kiricsi, I.: Production of nanotubes by the catalytic decomposition of different carbon-containing compounds. Appl. Catal. Gen. 199, 245 2000CrossRefGoogle Scholar
44Garcia, F.L., Peigney, A., Laurent, Ch.: Tetragonal-(Zr,Co)O2 solid solution: Combustion synthesis, thermal stability in air and reduction in H2, H2-CH4 and H2-C2H4 atmospheres. Mater. Res. Bull. 43, 3088 2008CrossRefGoogle Scholar
45Luo, G., Li, Z., Wei, F., Xiang, L., Deng, X., Jin, Y.: Catalysts effect on morphology of carbon nanotubes prepared by catalytic chemical vapor deposition in a nano-agglomerate bed. Physica B (Amsterdam) 323, 314 2002CrossRefGoogle Scholar
46Qian, W., Liu, T., Wang, Z., Yu, H., Li, Z., Wei, F., Luo, G.: Effect of adding nickel to iron-alumina on the morphology of as-grown carbon nanotubes. Carbon 41, 2487 2003CrossRefGoogle Scholar
47Yamada, M., Kawana, M., Miyake, M.: Synthesis and diameter control of multi-walled carbon nanotubes over gold nanoparticle catalysts. Appl. Catal. Gen. 302, 201 2006CrossRefGoogle Scholar
48Tran, K.Y., Heinrichs, B., Colomer, J-F., Pirard, J-P., Lambert, S.: Carbon nanotubes synthesis by the ethylene chemical catalytic vapour deposition (CCVD) process on Fe, Co, and Fe-Co/Al2O3 sol-gel catalysts. Appl. Catal. Gen. 318, 63 2007CrossRefGoogle Scholar
49Qian, W., Liu, T., Wei, F., Wang, Z., Luo, G., Yu, H., Li, Z.: The evaluation of the gross defects of carbon nanotubes in a continuous CVD process. Carbon 41, 2613 2003CrossRefGoogle Scholar
50McCaldin, S., Bououdina, M., Grant, D.M., Walker, G.S.: The effect of processing conditions on carbon nanostructures formed on an iron-based catalysts. Carbon 44, 2273 2006CrossRefGoogle Scholar