Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T05:41:50.401Z Has data issue: false hasContentIssue false

Synthesis, morphology, and formation mechanism of mullite particles produced by ultrasonic spray pyrolysis

Published online by Cambridge University Press:  31 January 2011

Dj. Janaćković
Affiliation:
Faculty of Technology and Metallurgy, Belgrade, Yugoslavia
V. Jokanović
Affiliation:
Institute for Technology of Nuclear and Other Mineral Row Materials, Belgrade, Yugoslavia
Lj. Kostić-Gvozdenović
Affiliation:
Faculty of Technology and Metallurgy, Belgrade, Yugoslavia
Lj. Živković
Affiliation:
Faculty of Electronics, Niš, Yugoslavia
D. Uskoković
Affiliation:
Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Yugoslavia
Get access

Abstract

Submicrometer spherical particles of mullite powder were synthesized by ultrasonic spray pyrolysis of emulsion and solutions, using tetra-ethyl-orthosilicate (TEOS) or silicic-acid and Al(NO3)3 · 9H2O as initial compounds. Crystallization of mullite phase was determined by differential thermal (DT), thermogravimetric (TG), infrared (IR), and x-ray analyses. The synthesis of mullite from TEOS emulsion occurs by crystallization of γ–Al2O3 (or Al, Si-spinel) from the amorphous phase and its subsequent reaction with amorphous SiO2, as well as by crystallization of pseudotetragonal mullite below 1000 °C and its subsequent phase transformation into orthorhombic mullite. In the powders produced from silicic acid solutions, synthesis of mullite occurs only by crystallization of γ–Al2O3 between 900 and 1000 °C and its further reaction with amorphous SiO2 between 1100 and 1200 °C. Particle formation mechanism depended directly on the initial emulsion or solution preparation, i.e., on the phase separation in the emulsion and on the silicic-acid crosslinking conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Aksay, I. A., Dabbs, D. M. and Sarikaya, M., J. Am. Ceram. Soc. 74, 2343 (1991).CrossRefGoogle Scholar
2.Sōmiya, S. and Hirata, Y., Ceram. Bull. 70, 1624 (1991).Google Scholar
3.Tumala, R. R., J. Am. Ceram. Soc. 74, 895 (1991).CrossRefGoogle Scholar
4.Zhang, S. and Messing, G. L., in Ceramic Transaction, Ceramic Powder Science III, edited by Messing, G. L., Hirano, S., and Hausner, H. (American Ceramic Society, Westerville, OH, 1991), Vol. 12, pp. 4957.Google Scholar
5.Okada, K., Otsuka, N., and Sōmiya, S., Ceram. Bull. 70, 1633 (1991).Google Scholar
6.Kanno, Y. and Suzuki, T., J. Mater. Sci. 23, 3067 (1988).CrossRefGoogle Scholar
7.Anderson, H., Kodas, T. T., and Smith, D. M., Ceram. Bull. 68, 996 (1989).Google Scholar
8.Milošević, O., Jordović, B., and Uskoković, D., Mater. Lett. 19, 165 (1994).CrossRefGoogle Scholar
9.Jayanthi, G. V., Zhang, S.C., and Messing, G. L., Aerosol. Sci. Technol. 19, 478 (1993).CrossRefGoogle Scholar
10.Messing, G. L., Zhang, S. C., and Jayanthi, G.V., J. Am. Ceram. Soc. 76, 2707 (1993).CrossRefGoogle Scholar
11.Milošević, O. and Uskoković, D., Mater. Sci. Eng. A168, 249 (1993).CrossRefGoogle Scholar
12.Janaćković, Dj., Jokanović, V., Živković, Lj., Kostić-Gvozdenović, Lj. and Uskoković, D., in Proceedings of World Ceramic Congress—Eight Cimtec, Ceramics: Charting the Future, Advances in Science and Technology, edited by Vincenzini, P. (Techna, Faenca, 1995), pp. 12291236.Google Scholar
13.Kanzaki, S. and Tabata, H., J. Am. Ceram. Soc. 68, C6 (1985).CrossRefGoogle Scholar
14.Moore, K. A., Cesarano, J. III, Smith, D. M., and Kodas, T.T., J. Am. Ceram Soc. 75, 213 (1992).CrossRefGoogle Scholar
15.Ocana, M., Sanz, J., Gonzales-Carreno, T., and Serna, S., J. Am. Ceram. Soc. 76, 2081 (1993).CrossRefGoogle Scholar
16.Ossaka, J., Nature (London) 191, 1000 (1961).CrossRefGoogle Scholar
17.Schneider, H. and Rymon-Lipinski, T., J. Am. Ceram. Soc. 71, C162 (1988).Google Scholar
18.Sakurai, O., Mizutani, N., and Kato, M., Nippon Seramikkusu Kyokai Gakujutu Ronbunshi 96, 639 (1988).CrossRefGoogle Scholar
19.Lang, R. J., J. Acoust. Soc. Am. 34, 6 (1962).CrossRefGoogle Scholar
20.Iler, R. K., Colloidal Silica, Surface and Colloid Science, edited by Matijević, E. (John Wiley and Sons, New York, 1973), Vol. 6, pp. 912.Google Scholar
21.Okada, K. and Otsuka, N., J. Am. Ceram. Soc. 69, 652 (1986).CrossRefGoogle Scholar
22.Sanz, J., Sobrados, I., Cavalieri, A. L., Pena, P., de Aza, S., and Moya, S., J. Am. Ceram. Soc. 74, 2398 (1991).CrossRefGoogle Scholar
23.Hoffman, D. W., Roy, R., and Komarneni, S., J. Am. Ceram. Soc. 67, 468 (1984).CrossRefGoogle Scholar
24.Li, D. X. and Thomson, W. J., J. Am. Ceram. Soc. 74, 574 (1991).CrossRefGoogle Scholar
25.Pask, J. A., Zhang, X. W., Tomsia, A. P., and Yoldas, B. E., J. Am. Ceram. Soc. 70, 704 (1987).CrossRefGoogle Scholar
26.Hsi, C. S., Lu, H. Y., and Yen, F. S., J. Am. Ceram. Soc. 72, 2208 (1989).CrossRefGoogle Scholar
27.Hirata, Y., Sakeda, K., Matsushita, Y., and Ishihara, Y., J. Am. Ceram. Soc. 72, 995 (1989).CrossRefGoogle Scholar
28.Percival, H. J., Duncan, J. F., and Foster, P. K., J. Am. Ceram. Soc. 57, 57 (1974).CrossRefGoogle Scholar
29.MacKenzie, K. J., J. Am. Ceram. Soc. 55, 68 (1972).CrossRefGoogle Scholar
30.Ocana, M., Fornes, V., and Serna, C. J., Ceram. Int. 18, 99 (1992).CrossRefGoogle Scholar