Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T10:08:04.213Z Has data issue: false hasContentIssue false

Synthesis, microstructure and hardness of bulk ultrahard BN nanocomposites

Published online by Cambridge University Press:  31 January 2011

D. Rafaja
Affiliation:
Institut für Werkstoffwissenschaft (Institute of Materials Science), Technische Universität (TU)-Bergakademie Freiberg, D-09599 Freiberg, Germany
V. Klemm
Affiliation:
Institut für Werkstoffwissenschaft (Institute of Materials Science), Technische Universität (TU)-Bergakademie Freiberg, D-09599 Freiberg, Germany
M. Motylenko
Affiliation:
Institut für Werkstoffwissenschaft (Institute of Materials Science), Technische Universität (TU)-Bergakademie Freiberg, D-09599 Freiberg, Germany
M.R. Schwarz
Affiliation:
Institut für Anorganische Chemie, Technische Universität (TU)-Bergakademie Freiberg, D-09599 Freiberg, Germany; and Chemische Materialwissenschaft, Fachbereich Chemie, Universität Konstanz, D-78457 Konstanz, Germany
T. Barsukova*
Affiliation:
Institut für Anorganische Chemie, Technische Universität (TU)-Bergakademie Freiberg, D-09599 Freiberg, Germany
E. Kroke*
Affiliation:
Institut für Anorganische Chemie, Technische Universität (TU)-Bergakademie Freiberg, D-09599 Freiberg, Germany
D. Frost
Affiliation:
Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany
L. Dubrovinsky
Affiliation:
Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany
N. Dubrovinskaia
Affiliation:
Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ultrahard boron nitride compacts containing nanosized domains of the cubic (c-BN), wurtzitic (w-BN), and hexagonal (h-BN) phase were synthesized at high-pressure/high-temperature (HP/HT) conditions. Hot-pressed and pyrolytic BN, both containing h-BN as a main component, were used as starting materials. The HP/HT products were investigated by x-ray diffraction via Rietveld and line-profile analysis, as well as high-resolution transmission electron microscopy. c-BN was the dominant phase in all products, complemented by up to 25 wt% w-BN and some remaining “compressed h-BN.” In particular samples, partial crystallographic coherence of adjacent crystallites to x-rays was observed, which has been previously found in superhard transition metal nitride-based nanocomposite coatings. In the BN nanocomposites, the partial coherence of nanocrystallites to x-rays was improved by their strong local preferred orientation, which is made possible by the well-known orientation relationships among h-BN, w-BN, and c-BN phases. The correlation between the weight fraction and the average size of the c-BN crystallites helped to describe the formation of c-BN/(w-BN) nanocomposites from submicron-sized h-BN domains in the starting materials. The Knoop and Vickers hardness of specimens with crystallite sizes ranging from 6 to ∼50 nm was found to be significantly higher than that of c-BN single crystals, despite the presence of residual h-BN.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Veprek, S., Veprek-Heijman, M.G.J., Karvankova, P.Prochazka, J.: Different approaches to superhard coatings and nanocomposites. Thin Solid Films,476 1 2005CrossRefGoogle Scholar
2Neerinck, D., Persoone, P., Sercu, M., Goel, A., Venkatraman, C., Kester, D., Halter, C., Swab, P.Bray, D.: Diamond-like nanocomposite coatings for low-wear and low-friction applications in humid environments. Thin Solid Films 317, 402 1998CrossRefGoogle Scholar
3Hauert, R.Patscheider, J.: From alloying to nanocomposites: Improved performance of hard coatings. Adv. Eng. Mater. 2, 247 2000Google Scholar
4Jilek, M., Cselle, T., Holubar, P., Morstein, M., Veprek-Heijman, M.G.J.Veprek, S.: Development of novel coating technology by vacuum arc with rotating cathodes for industrial production of nc-(Al1–xTix)N/a-Si3N4 superhard nanocomposite coatings for dry, hard machining. Plasma Chem. Plasma 493, 24 2004Google Scholar
5Irifune, T., Kurio, A., Sakamoto, S., Inoue, T.Sumiya, H.: Ultrahard polycrystalline diamond from graphite. Nature 421, 599 2003CrossRefGoogle ScholarPubMed
6Sumiya, H.Irifune, T.: Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature. J. Mater. Res. 22, 2345 2007CrossRefGoogle Scholar
7Dubrovinskaia, N.A., Dubrovinsky, L., Langenhorst, F., Jacobsen, S.Liebske, C.: Nanocrystalline diamond synthesized from C60. Diamond Relat. Mater. 14, 16 2005CrossRefGoogle Scholar
8Sumiya, H.Irifune, T.: Indentation hardness of nano-polycrystalline diamond prepared from graphite by direct conversion. Diamond Relat. Mater. 13, 1771 2004CrossRefGoogle Scholar
9Ozbayaraktar, S.: Polycrystalline diamond and cubic boron nitride in Handbook of Ceramic Hard Materials Part II edited by R. Riedel Wiley-VCH Weinheim, Germany 2000 512–520Google Scholar
10Solozhenko, V.L., Dub, S.N.Novikov, N.V.: Mechanical properties of cubic BC2N, a new superhard phase. Diamond Relat. Mater. 10, 2228 2001CrossRefGoogle Scholar
11Dubrovinskaia, N., Solozhenko, V.L., Miyajima, N., Dmitriev, V., Kurakevych, O.O.Dubrovinsky, L.: Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness. Appl. Phys. Lett. 90, 101912 2007CrossRefGoogle Scholar
12Corrigan, F.R.Bundy, F.P.: Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures. J. Chem. Phys. 63, 381 1975CrossRefGoogle Scholar
13Veprek, S.: The search for novel, superhard materials. J. Vac. Sci. Technol., A 17, 2401 1999CrossRefGoogle Scholar
14Adibi, F., Petrov, I., Hultman, L., Wahlström, U., Shimizu, T., McIntyre, D., Greene, J.E.Sundgren, J-E.: Defect structure and phase-transitions in epitaxial metastable cubic Ti0.5Al0.5N alloys grown on MgO(001) by ultra-high-vacuum magnetron sputter deposition. J. Appl. Phys. 69, 6437 1991CrossRefGoogle Scholar
15Männling, H-D., Patil, D.S., Moto, K., Jilek, M.Veprek, S.: Thermal stability of superhard nanocomposite coatings consisting of immiscible nitrides. Surf. Coat. Technol. 146, 263 2001CrossRefGoogle Scholar
16Hörling, A., Hultman, L., Odén, M., Sjölén, J.Karlsson, L.: Thermal stability of arc evaporated high aluminum-content Ti1–xAlxN thin films. J. Vac. Sci. Technol., A 20, 1815 2002CrossRefGoogle Scholar
17Veprek, S., Männling, H-D., Jilek, M.Holubar, P.: Avoiding the high-temperature decomposition and softening of (Al1−xTix)N coatings by the formation of stable superhard nc-(Al1−xTix)N/ a-Si3N4 nanocomposite. Mater. Sci. Eng., A 366, 202 2004CrossRefGoogle Scholar
18Rafaja, D., Poklad, A., Klemm, V., Schreiber, G., Heger, D., Šíma, M., Dopita, M.: Some consequences of the partial crystallographic coherence between nanocrystalline domains in Ti-Al-N and Ti-Al-Si-N coatings. Thin Solid Films 514, 240 2006CrossRefGoogle Scholar
19Sugishima, A., Kajioka, H.Makino, Y.: Phase transition of pseudobinary Cr-Al-N films deposited by magnetron sputtering method. Surf. Coat. Technol. 97, 590 1997CrossRefGoogle Scholar
20Makino, Y.Nogi, K.: Synthesis of pseudobinary Cr-Al-N films with B1 structure by rf-assisted magnetron sputtering method. Surf. Coat. Technol. 98, 1008 1998CrossRefGoogle Scholar
21Makino, Y.: Prediction of phase change in pseudobinary transition metal aluminum nitrides by band parameters method. Surf. Coat. Technol. 193, 185 2005CrossRefGoogle Scholar
22Rafaja, D., Dopita, M., Růžička, M., Klemm, V., Heger, D., Schreiber, G.Šíma, M.: Microstructure development in Cr-Al-Si-N nanocomposites deposited by cathodic arc evaporation. Surf. Coat. Technol. 201, 2835 2006CrossRefGoogle Scholar
23Porter, D.A.Easterling, K.E.Phase Transformations in Metals and Alloys 2nd ed.Chapman & Hall London 1992CrossRefGoogle Scholar
24Hao, S., Delley, B., Veprek, S.Stampfl, C.: Superhard nitride-based nanocomposites: Role of interfaces and effect of impurities. Phys. Rev. Lett. 97, 086102 2006CrossRefGoogle ScholarPubMed
25Hao, S., Delley, B., Veprek, S.Stampfl, C.: Role of oxygen in TiN(III)/SixNy/TiN(III) interfaces: Implications for superhard nanocrystalline nc-TiN/a-Si3N4 nanocomposites. Phys. Rev. B: Condens. Matter 74 035424 2006CrossRefGoogle Scholar
26Hao, S., Delley, B.Stampfl, C.: Structure and properties of TiN(111)/SixNy/TiN(111) interfaces in superhard nanocomposites: First-principles investigations. Phys. Rev. B: Condens. Matter 74, 035402 2006CrossRefGoogle Scholar
27Veprek, S.Veprek-Heijman, M.G.J.: The formation and role of interfaces in superhard nc-Men/a-Si3N4 nanocomposites. Surf. Coat. Technol. 201, 6064 2007CrossRefGoogle Scholar
28Sumiya, H., Irifune, T., Kurio, A., Sakamoto, S.Inoue, T.: Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure. J. Mater. Sci. 39, 445 2004CrossRefGoogle Scholar
29Britun, V.F., Kurdyumov, A.V.Petrusha, I.A.: Diffusionless nucleation of lonsdaleite and diamond in hexagonal graphite under static compression. Powder Metall. 43, 87 2004CrossRefGoogle Scholar
30Kurdyumov, A.V., Britun, V.F.Petrusha, I.A.: Structural mechanisms of rhombohedral BN transformations into diamond-like phases. Diamond Relat. Mater. 5, 1229 1996CrossRefGoogle Scholar
31Rafaja, D., Klemm, V., Schreiber, G., Knapp, M.Kužel, R.: Interference phenomena observed by x-ray diffraction in nanocrystalline thin films. J. Appl. Crystallogr. 37, 613 2004CrossRefGoogle Scholar
32Volkogin, V.M.: Role of lamellar structures in the change in strength properties of a wurstite boron nitride-base polycrystalline material. Sov. Powder Metall. 28, 36 1989CrossRefGoogle Scholar
33Rubie, D.C.: Characterising the sample environment in multianvil high-pressure experiments. Phase Transitions 68, 431 1999CrossRefGoogle Scholar
34Walter, M.J., Thibault, Y., Wei, K.Luth, R.W.: Characterizing experimental pressure and temperature conditions in multi-anvil apparatus. Can. J. Phys. 73, 273 1995CrossRefGoogle Scholar
35Nishihara, Y., Matsukage, K.N.Karato, S-I.: Effects of metal protection coils on thermocouple EMF in multi-anvil high-pressure experiments. Am. Mineral. 91, 111 2006CrossRefGoogle Scholar
36Rietveld, H.M.: Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22, 151 1967CrossRefGoogle Scholar
37Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 1969CrossRefGoogle Scholar
38Rodriguez-Carvajal, J.: Recent Developments of the Program FULLPROF, Vol. 26 edited by R. Dinnebier (Commission on Powder Diffraction (IUCr) Newsletter 2001 12Google Scholar
39Berar, J.F.Lelann, P.: ESDs and estimated probable-error obtained in rietveld refinements with local correlations. J. Appl. Crystallogr. 24, 1 1991CrossRefGoogle Scholar
40Williamson, G.K.Hall, A.H.: X-ray line broadening from filed aluminum and wolfram. Acta Metall. 2, 22 1953CrossRefGoogle Scholar
41Rafaja, D., Dopita, M., Růžička, M., Klemm, V., Schreiber, G., Heger, D.Šíma, M.: Internal structure of clusters of partially coherent nanocrystallites in Cr-Al-N and Cr-Al-Si-N coatings. Surf. Coat. Technol. 201, 9476 2007CrossRefGoogle Scholar
42Solozhenko, V.L., Petrusha, I.A., Engler, O.Bingert, J.F.: The crystallographic texture of graphite-like and diamond-like boron nitride bulk materials. J. Mater. Sci. 36, 2659 2001CrossRefGoogle Scholar
43Thomas, J. Jr., Weston, N.E.O’Connor, T.E.: Turbostratic boron nitride, thermal transformation to ordered-layer-lattice boron nitride. J. Am. Chem. Soc. 84, 4619 1962CrossRefGoogle Scholar
44Mittemeijer, E.J.Scardi, P.: Diffraction Analysis of the Microstructure of Materials Springer-Verlag Berlin, Germany 2003Google Scholar
45Pease, R.S.: An x-ray study of boron nitride. Acta Crystallogr. 5, 356 1952CrossRefGoogle Scholar
46Horiuchi, S., He, L-L., Onoda, M.Akaishi, M.: Monoclinic phase of boron nitride appearing during the hexagonal cubic phase transition at high pressure and high temperature. Appl. Phys. Lett. 68, 182 1996CrossRefGoogle Scholar
47Meng, Y., Mao, H.K., Eng, P.J., Trainor, T.P., Newville, M., Hu, M.Y., Kao, C-C., Shu, J., Hausermann, D.Hemley, R.J.: The formation of sp3 bonding in compressed BN. Nat. Mater. 3, 111 2004CrossRefGoogle ScholarPubMed
48Huang, J.Zhu, Y.T.: Advances in the synthesis and characterization of boron nitride. Defect Diffus. Forum 186–187, 1 2000CrossRefGoogle Scholar
49Lorenz, H.Orgzall, I.: In situ observation of the crystallization of amorphous boron nitride at high pressures and temperatures. Scripta Mater. 52, 537 2005CrossRefGoogle Scholar
50Horiuchi, S., Huang, J.Y., He, L-L., Mao, J.F.Taniguchi, T.: Facilitated synthesis of cubic boron nitride by a mechanochemical effect. Philos. Mag. A 78, 1065 1998CrossRefGoogle Scholar
51Huang, J.Y.Zhu, Y.T.: Atomic-scale structural investigations on the nucleation of cubic boron nitride from amorphous boron nitride under high pressures and temperatures. Chem. Mater. 14, 1873 2002CrossRefGoogle Scholar
52Britun, V.F.Kurdyumov, A.V.: Crystal defect generation during diffusionless transformations of boron nitride by puckering mechanism. J. Mater. Sci. 34, 5677 1999CrossRefGoogle Scholar
53Dub, S.N.Petrusha, I.A.: Mechanical properties of polycrystalline cBN obtained from pyrolytic gBN by direct transformation technique. High Pressure Res. 26, 71 2006CrossRefGoogle Scholar
54Hall, E.O.: The deformation and ageing of mild steel: III. Discussion of results. Proc. Phys. Soc. London,64 747 1951CrossRefGoogle Scholar
55Zhao, Y., He, D.W., Daemen, L.L., Shen, T.D., Schwarz, R.B., Zhu, Y., Bish, D.L., Huang, J., Zhang, J., Shen, G., Qian, J.Zerda, T.W.: Superhard B-C-N materials synthesized in nanostructured bulks. J. Mater. Res. 17, 3139 2002CrossRefGoogle Scholar