Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-04T19:05:46.273Z Has data issue: false hasContentIssue false

Synthesis, crystallinity control, and photocatalysis of nanostructured titanium dioxide shells

Published online by Cambridge University Press:  29 August 2012

Ji Bong Joo
Affiliation:
Department of Chemistry, University of California, Riverside, California 92521
Qiao Zhang
Affiliation:
Department of Chemistry, University of California, Riverside, California 92521
Michael Dahl
Affiliation:
Department of Chemistry, University of California, Riverside, California 92521
Francisco Zaera
Affiliation:
Department of Chemistry, University of California, Riverside, California 92521
Yadong Yin*
Affiliation:
Department of Chemistry, University of California, Riverside, California 92521
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this article, we review our recent research efforts on the synthesis, crystallinity control, and photocatalysis of nanostructured titanium dioxide (TiO2) shells. First, we introduce several synthetic methods for preparing TiO2 shell structures using either template-free or template-assisted approaches. Several methods to change the structures from amorphous to crystalline and subsequently ways to enhance the crystallinity are then discussed, including those involving the “silica-protected calcination” and “partial etching and recalcination” strategies. We also discuss the photocatalytic applications of the TiO2 nanoshells and the methods for improving their catalytic activities. Finally, we conclude with a summary and our perspective on the further development of the nanostructured TiO2 shells. It is believed that more rational design and modification strategies such as well-controlled nonmetal doping, plasmonic metal decoration and the hybridization with other semiconducting materials will significantly enhance the photocatalytic efficiency of TiO2-based catalyst materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fox, M.A. and Dulay, M.T.: Heterogeneous photocatalysis. Chem. Rev. 93, 341 (1993).CrossRefGoogle Scholar
Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).Google Scholar
Linsebigler, A.L., Lu, G. and Yates, J.T.: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995).Google Scholar
Kudo, A.: Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. Int. J. Hydrogen Energy 32, 2673 (2007).CrossRefGoogle Scholar
Maeda, K. and Domen, K.: Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655 (2010).Google Scholar
Ye, M., Zhang, Q., Hu, Y., Ge, J., Lu, Z., He, L., Chen, Z., and Yin, Y.: Magnetically recoverable core–shell nanocomposites with enhanced photocatalytic activity. Chem. Eur. J. 16, 6243 (2010).Google Scholar
Yun, H.J., Lee, H., Joo, J.B., Kim, N.D., Kang, M.Y., and Yi, J.: Facile preparation of high performance visible light sensitive photocatalysts. Appl. Catal., B 94, 241 (2010).CrossRefGoogle Scholar
Yun, H.J., Lee, H., Joo, J.B., Kim, N.D., and Yi, J.: Tuning the band-gap energy of TiO2-xCx nanoparticle for high performance photocatalyst. Electrochem. Commun. 12, 769 (2010).Google Scholar
Yun, H.J., Lee, H., Kim, N.D., Lee, D.M., Yu, S., and Yi, J.: A combination of two visible-light-responsive photocatalysts for achieving the Z-scheme in the solid state. ACS Nano 5, 4084 (2011).CrossRefGoogle ScholarPubMed
Zuo, F., Wang, L., Wu, T., Zhang, Z., Borchardt, D., and Feng, P.: Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 132, 11856 (2010).Google Scholar
Zhang, J., Bang, J.H., Tang, C., and Kamat, P.V.: Tailored TiO2−SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4, 387 (2009).Google Scholar
Chen, X., Liu, L., Yu, P.Y., and Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).CrossRefGoogle ScholarPubMed
Cao, T., Li, Y., Wang, C., Shao, C., and Liu, Y.: A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity. Langmuir 27, 2946 (2011).Google Scholar
Demirörs, A.F., van Blaaderen, A., and Imhof, A.: Synthesis of eccentric titania−silica core−shell and composite particles. Chem. Mater. 21, 979 (2009).Google Scholar
Eun, T.H., Kim, S-H., Jeong, W-J., Jeon, S-J., Kim, S-H., and Yang, S-M.: Single-step fabrication of monodisperse TiO2 hollow spheres with embedded nanoparticles in microfluidic devices. Chem. Mater. 21, 201 (2009).CrossRefGoogle Scholar
Wang, P., Chen, D., and Tang, F-Q.: Preparation of titania-coated polystyrene particles in mixed solvents by ammonia catalysis. Langmuir 22, 4832 (2006).CrossRefGoogle ScholarPubMed
Imhof, A.: Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells. Langmuir 17, 3579 (2001).Google Scholar
Zheng, R., Meng, X., and Tang, F.: A general protocol to coat titania shell on carbon-based composite cores using carbon as coupling agent. J. Solid State Chem. 182, 1235 (2009).CrossRefGoogle Scholar
Lee, J.W., Othman, M.R., Eom, Y., Lee, T.G., Kim, W.S., and Kim, J.: The effects of sonification and TiO2 deposition on the microcharacteristics of the thermally treated SiO2/TiO2 spherical core–shell particles for photocatalysis of methyl orange. Microporous Mesoporous Mater. 116, 561 (2008).CrossRefGoogle Scholar
Pastoriza-Santos, I., Koktysh, D.S., Mamedov, A.A., Giersig, M., Kotov, N.A., and Liz-Marzán, L.M.: One-pot synthesis of Ag@TiO2 core−shell nanoparticles and their layer-by-layer assembly. Langmuir 16, 2731 (2000).CrossRefGoogle Scholar
Mayya, K.S., Gittins, D.I., and Caruso, F.: Gold−titania core−shell nanoparticles by polyelectrolyte complexation with a titania precursor. Chem. Mater. 13, 3833 (2001).Google Scholar
Sakai, H., Kanda, T., Shibata, H., Ohkubo, T., and Abe, M.: Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle. J. Am. Chem. Soc. 128, 4944 (2006).Google Scholar
Mayya, K.S., Gittins, D.I., Dibaj, A.M., and Caruso, F.: Nanotubes prepared by templating sacrificial nickel nanorods. Nano Lett. 1, 727 (2001).Google Scholar
Yin, Y., Lu, Y., Gates, B., and Xia, Y.: Synthesis and characterization of mesoscopic hollow spheres of ceramic materials with functionalized interior surfaces. Chem. Mater. 13, 1146 (2001).Google Scholar
Lu, Y., Yin, Y., and Xia, Y.: Preparation and characterization of micrometer-sized “egg shells”. Adv. Mater. 13, 271 (2001).3.0.CO;2-T>CrossRefGoogle Scholar
Zhong, Z., Yin, Y., Gates, B., and Xia, Y.: Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv. Mater. 12, 206 (2000).Google Scholar
Yang, H.G. and Zeng, H.C.: Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B 108, 3492 (2004).Google Scholar
Hu, Y., Ge, J., Sun, Y., Zhang, T., and Yin, Y.: A self-templated approach to TiO2 microcapsules. Nano Lett. 7, 1832 (2007).CrossRefGoogle ScholarPubMed
Zhang, Q., Zhang, T., Ge, J., and Yin, Y.: Permeable silica shell through surface-protected etching. Nano Lett. 8, 2867 (2008).Google Scholar
Li, J. and Zeng, H.C.: Size tuning, functionalization, and reactivation of Au in TiO2 nanoreactors. Angew. Chem. Int. Ed. 44, 4342 (2005).Google Scholar
Li, J. and Zeng, H.C.: Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening. J. Am. Chem. Soc. 129, 15839 (2007).Google Scholar
Zhang, T., Ge, J., Hu, Y., Zhang, Q., Aloni, S., and Yin, Y.: Formation of hollow silica colloids through a spontaneous dissolution–regrowth process. Angew. Chem. Int. Ed. 47, 5806 (2008).Google Scholar
Lou, X.W., Wang, Y., Yuan, C., Lee, J.Y., and Archer, L.A.: Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325 (2006).CrossRefGoogle Scholar
Chang, Y., Teo, J.J., and Zeng, H.C.: Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 21, 1074 (2004).Google Scholar
Teo, J.J., Chang, Y., and Zeng, H.C.: Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir 22, 7369 (2006).Google Scholar
Liu, B. and Zeng, H.C.: Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core–shell semiconductors. Small 1, 566 (2005).Google Scholar
Zhang, Q., Wang, W., Goebl, J., and Yin, Y.: Self-templated synthesis of hollow nanostructures. Nano Today 4, 494 (2009).CrossRefGoogle Scholar
Joo, J.B., Zhang, Q., Lee, I., Dahl, M., Zaera, F., and Yin, Y.: Mesoporous anatase titania hollow nanostructures though silica-protected calcination. Adv. Funct. Mater. 22, 166 (2012).CrossRefGoogle Scholar
Joo, J.B., Zhang, Q., Dahl, M., Lee, I., Goebl, J., Zaera, F., and Yin, Y.: Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energy Environ. Sci. 5, 6321 (2012).Google Scholar
Ao, Y., Xu, J., Fu, D., and Yuan, C.: A simple method for the preparation of titania hollow sphere. Catal. Commun. 9, 2574 (2008).Google Scholar
Ao, Y., Xu, J., Fu, D., and Yuan, C.: A simple method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light. J. Hazard. Mater. 167, 413 (2009).Google Scholar
Lee, I., Joo, J.B., Yin, Y., and Zaera, F.: A Yolk@Shell nanoarchitecture for Au/TiO2 catalysts. Angew. Chem. Int. Ed. 50, 10208 (2011).CrossRefGoogle ScholarPubMed
Yang, Z., Niu, Z., Lu, Y., Hu, Z., and Han, C.C.: Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core–shell gel particles. Angew. Chem. Int. Ed. 42, 1943 (2003).CrossRefGoogle ScholarPubMed
Kamata, K., Lu, Y., and Xia, Y.: Synthesis and characterization of monodispersed core−shell spherical colloids with movable cores. J. Am. Chem. Soc. 125, 2384 (2003).Google Scholar
Zhang, Q., Joo, J-B., Lu, Z., Dahl, M., Oliveira, D., Ye, M., and Yin, Y.: Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Res. 4, 103 (2011).CrossRefGoogle Scholar
Zhang, Q., Lima, D.Q., Lee, I., Zaera, F., Chi, M., and Yin, Y.: A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew. Chem. Int. Ed. 123, 7226 (2011).Google Scholar