Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T07:41:14.250Z Has data issue: false hasContentIssue false

Synthesis, characterization, and bioactivity of SrTiO3-incorporated titanium coating

Published online by Cambridge University Press:  08 May 2018

Souvik Sahoo
Affiliation:
Bioceramics and Coating Division, CSIR-Central Glass & Ceramic Research Institute, Kolkata-700032, India; and Dr. M.N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Howrah-711103, India
Arijit Sinha
Affiliation:
Dr. M.N. Dastur School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Howrah-711103, India
Vamsi Krishna Balla
Affiliation:
Bioceramics and Coating Division, CSIR-Central Glass & Ceramic Research Institute, Kolkata-700032, India
Mitun Das*
Affiliation:
Bioceramics and Coating Division, CSIR-Central Glass & Ceramic Research Institute, Kolkata-700032, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Surface modification by the bioactive material is a potential way to overcome the poor osseoconductivity of titanium (Ti)-based implants. A continuous wave laser source was used to deposit strontium titanate (SrTiO3)-reinforced Ti coating on the Ti substrate using the laser engineered net shaping (LENS™) process. The maximum of 10 wt% SrTiO3 could be incorporated into Ti using laser without cracking of the deposit. This study investigated the constituent phases, microstructure, compositional analysis, wettability, and electrochemical behavior of the composite coatings. XRD and EDX analyses confirmed the presence of the SrTiO3 phase in the coatings. The composite coatings also exhibited superior mechanical properties, corrosion resistance, and bioactivity compared to that of commercially pure Ti. In vitro ion release study confirmed the sustain release of Sr2+ from the composite coatings. In summary, the excellent mechanical bonding with the substrate and high in vitro bioactivity make these SrTiO3-incorporated composite coatings as a potential material to enhance osseoconductivity of Ti-based orthopedic implants.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gomez-Vega, J.M., Saiz, E., and Tomsia, A.P.: Glass based coatings for titanium implant alloys. J. Biomed. Mater. Res. 46, 549559 (1999).3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Baino, F. and Verné, E.: Glass-based coatings on biomedical implants: A state-of-the-art review. Biomed. Glass. 3, 117 (2017).CrossRefGoogle Scholar
Cacciotti, I.: Bivalent cationic ions doped bioactive glasses: The influence of magnesium, zinc, strontium and copper on the physical and biological properties. J. Mater. Sci. 52, 88128831 (2017).CrossRefGoogle Scholar
Comesaña, R., Quintero, F., Lusquiños, F., Pascual, M.J., Boutinguiza, M., Durán, A., and Pou, J.: Laser cladding of bioactive glass coatings. Acta Biomater. 6, 953961 (2010).CrossRefGoogle ScholarPubMed
Nag, S., Paital, S.R., Nandawana, P., Mahdak, K., Ho, Y.H., Vora, H.D., Banerjee, R., and Dahotre, N.B.: Laser deposited biocompatible Ca–P coatings on Ti–6Al–4V: Microstructural evolution and thermal modeling. Mater. Sci. Eng., C 33, 165173 (2013).CrossRefGoogle ScholarPubMed
Cheng, G.J., Pirzada, D., Cai, M., Mohanty, P., and Bandyopadhyay, A.: Bioceramic coating of hydroxyapatite on titanium substrate with Nd-YAG laser. Mater. Sci. Eng., C 25, 541547 (2005).CrossRefGoogle Scholar
Yang, Y., Serpersu, K., He, W., Paital, S.R., and Dahotre, N.B.: Osteoblast interaction with laser cladded HA and SiO2-HA coatings on Ti–6Al–4V. Mater. Sci. Eng., C 31, 16431652 (2011).CrossRefGoogle Scholar
Roy, M., Balla, V.K., Bandyopadhyay, A., and Bose, S.: Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants. Acta Biomater. 4, 324333 (2008).CrossRefGoogle ScholarPubMed
Balla, V.K., Das, M., Bose, S., Janaki Ram, G.D., and Manna, I.: Laser surface modification of 316 L stainless steel with bioactive hydroxyapatite. Mater. Sci. Eng., C 33, 45944598 (2013).CrossRefGoogle ScholarPubMed
Zhang, S., Cheng, X., Yao, Y., Wei, Y., Han, C., Shi, Y., Wei, Q., and Zhang, Z.: Porous niobium coatings fabricated with selective laser melting on titanium substrates: Preparation, characterization, and cell behavior. Mater. Sci. Eng., C 53, 5079 (2015).CrossRefGoogle ScholarPubMed
Balla, V.K., Banerjee, S., Bose, S., and Bandyopadhyay, A.: Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomater. 6, 23292334 (2010).CrossRefGoogle ScholarPubMed
Bose, S., Fielding, G., Tarafder, S., and Bandyopadhyay, A.: Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol. 31, 594605 (2013).CrossRefGoogle ScholarPubMed
Peng, S., Liu, X.S., Huang, S., Li, Z., Pan, H., Zhen, W., Luk, K.D.K., Guo, X.E. and Lu, W.W.: The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: Involvement of osteoprotegerin. Bone 49, 12901298 (2011).CrossRefGoogle ScholarPubMed
Braux, J., Velard, F., Guillaume, C., Bouthors, S., Jallot, E., Nedelec, J.M., Laurent-Maquin, D., and Laquerrière, P.: A new insight into the dissociating effect of strontium on bone resorption and formation. Acta Biomater. 7, 25932603 (2011).CrossRefGoogle Scholar
Capuccini, C., Torricelli, P., Sima, F., Boanini, E., Ristoscu, C., Bracci, B., Socol, G., Fini, M., Mihailescu, I.N., and Bigi, A.: Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: In vitro osteoblast and osteoclast response. Acta Biomater. 4, 18851893 (2008).CrossRefGoogle ScholarPubMed
Ni, G.X., Chiu, K.Y., Lu, W.W., Wang, Y., Zhang, Y.G., Hao, L.B., Li, Z.Y., Lam, W.M., Lu, S.B., and Luk, K.D.K.: Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty. Biomaterials 27, 43484355 (2006).CrossRefGoogle ScholarPubMed
Xia, W., Lindahl, C., Lausmaa, J., Borchardt, P., Ballo, A., Thomsen, P., and Engqvist, H.: Biomineralized strontium-substituted apatite/titanium dioxide coating on titanium surfaces. Acta Biomater. 6, 15911600 (2010).CrossRefGoogle ScholarPubMed
Forsgren, J. and Engqvist, H.: A novel method for local administration of strontium from implant surfaces. J. Mater. Sci.: Mater. Med. 21, 16051609 (2010).Google ScholarPubMed
Xin, Y., Jiang, J., Huo, K., Hu, T., and Chu, P.K.: Bioactive SrTiO3 nanotube arrays: Strontium delivery platform on Ti-based osteoporotic bone implants. ACS Nano 3, 32283234 (2009).CrossRefGoogle ScholarPubMed
Zhao, L., Wang, H., Huo, K., Zhang, X., Wang, W., Zhang, Y., Wu, Z., and Chu, P.K.: The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials 34, 1929 (2013).CrossRefGoogle ScholarPubMed
Andersen, O.Z., Offermanns, V., Sillassen, M., Almtoft, K.P., Andersen, I.H., Sørensen, S., Jeppesen, C.S., Kraft, D.C.E., Bøttiger, J., Rasse, M., Kloss, F., and Foss, M.: Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants. Biomaterials 34, 58835890 (2013).CrossRefGoogle ScholarPubMed
Coreno, J. and Coreno, O.: Evaluation of calcium titanate as apatite growth promoter. J. Biomed. Mater. Res., Part A 75, 478484 (2005).CrossRefGoogle ScholarPubMed
Das, M., Balla, V.K., Kumar, T.S.S., and Manna, I.: Fabrication of biomedical implants using laser engineered net shaping (LENS™). Trans. Indian Ceram. Soc. 72, 169174 (2013).CrossRefGoogle Scholar
Das, M., Bhattacharya, K., Dittrick, S.A., Mandal, C., Balla, V.K., Kumar, T.S.S., Bandyopadhyay, A., and Manna, I.: In situ synthesized TiB–TiN reinforced Ti6Al4V alloy composite coatings: Microstructure, tribological and in vitro biocompatibility. J. Mech. Behav. Biomed. Mater. 29, 259271 (2014).CrossRefGoogle ScholarPubMed
Weng, F., Chen, C., and Yu, H.: Research status of laser cladding on titanium and its alloys: A review. Mater. Des. 58, 412425 (2014).CrossRefGoogle Scholar
Das, M., Balla, V.K., Kumar, T.S.S., and Manna, I.: Tribological, electrochemical and in vitro biocompatibility study of SiC reinforced composite coatings. Mater. Des. 95, 510517 (2016).CrossRefGoogle Scholar
Anderson, J., Kahn, B., LaBone, T., Brown, L., and Harris, F.: Solubility of various forms of strontium titanate in lungs: In vitro and in vivo studies. Health Phys. 76, 628634 (1999).CrossRefGoogle ScholarPubMed
Park, J.W., Kim, H.K., Kim, Y.J., Jang, J.H., Song, H., and Hanawa, T.: Osteoblast response and osseointegration of a Ti–6Al–4V alloy implant incorporating strontium. Acta Biomater. 6, 28432851 (2010).CrossRefGoogle ScholarPubMed
Sila-Asna, M., Bunyaratvej, A., Maeda, S., Kitaguchi, H., and Bunyaratavej, N.: Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J. Med. Sci. 53, 2535 (2007).Google ScholarPubMed