Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T16:07:49.177Z Has data issue: false hasContentIssue false

Synthesis and properties of nanocrystalline ceria powders

Published online by Cambridge University Press:  01 November 2004

S. Basu
Affiliation:
Electroceramics Division, Central Glass and Ceramic Research Institute, Kolkata 700 032, India
P. Sujatha Devi*
Affiliation:
Electroceramics Division, Central Glass and Ceramic Research Institute, Kolkata 700 032, India
H.S. Maiti
Affiliation:
Electroceramics Division, Central Glass and Ceramic Research Institute, Kolkata 700 032, India
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanocrystalline CeO2 powder was synthesized by a citrate-nitrate autoignition process and characterized by thermal analysis, x-ray diffraction, and impedance spectroscopy measurements. Nanocrystalline (20–40 nm) ceria powder with fluorite structure had formed in situ during the citrate-nitrate autoignition process. The powder prepared could be sintered to density more than 98% of theoretical density at 1450 °C. The nanocrystalline CeO2 exhibited an increase in conductivity in Ar and H2 than air above 600 °C, suggesting a possible electronic contribution to the conductivity at low oxygen partial pressures. Impedance measurements on the sintered samples unequivocally established the potential of this process in developing phase pure ceria compositions.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inaba, H. and Tagawa, H.: Ceria based solid electrolytes. Solid State Ionics 83, 1 (1996).CrossRefGoogle Scholar
2Mogensen, M., Sammes, N.M. and Tompsett, G.A.: Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129, 63 (2000).CrossRefGoogle Scholar
3Stefanik, T.S. and Tuller, H.L.: Ceria-based gas sensors. J. Eur. Ceram. Soc. 21, 1967 (2001).CrossRefGoogle Scholar
4Jurado, J.R.: Present several items on ceria-based ceramic electrolytes: Synthesis, additive effects, reactivity and electrochemical behaviour. J. Mater. Sci. 36, 1133 (1993).CrossRefGoogle Scholar
5Kharton, V.V., Figueiredo, F.M., Navarro, L., Navmovich, E.N., Kovalevsky, A.V., Varemshnko, A.A., Viskup, A.P., Carnieiro, A., Marques, F.M.B. and Frade, J.R.: Ceria-based materials for solid oxide fuel cells. J. Mater. Sci. 36, 1105 (2001).CrossRefGoogle Scholar
6Tuller, H.L.: Ionic conduction in nano crystalline materials. Solid State Ionics 131, 143 (2000).CrossRefGoogle Scholar
7Chiang, Y.M., Lavik, E.B., Kosacki, I., Tuller, H.L. and Ying, J.Y.: Defect and transport properties of nanocrystalline CeO2−x. Appl. Phys. Lett. 69, 185 (1996).CrossRefGoogle Scholar
8Tschope, A., Ying, J.Y. and Tuller, H.L.: Catalytic redox activity and electrical conductivity of nanocrystalline non-stoichiometric cerium oxide. Sens. Actuators B 31, 111 (1996).Google Scholar
9Zhou, Y.C. and Rahaman, M.N.: Hydrothermal synthesis and sintering of ultrafine CeO2 powders. J. Mater. Res. 8, 1680 (1993).Google Scholar
10Hirano, M. and Kato, E.: The hydrothermal synthesis of ultrafine cerium (IV) oxide ceramics. J. Mater. Sci. Lett. 15, 1249 (1996).CrossRefGoogle Scholar
11Li, J.G., Ikegami, T., Lee, J.H. and Mori, T.: Characterization and sintering of nanocrystalline CeO2 powders synthesized by a mimic alkoxide method. Acta Mater. 49, 419 (2001).Google Scholar
12Zhang, J., Ju, X., Wu, Z.Y., Liu, T., Hu, T.D., Xie, Y.N. and Zhang, Z.L.: Structural characterization of cerium oxide nanocrystals prepared by the micro emulsion method. Chem. Mater. 13, 4192 (2001).CrossRefGoogle Scholar
13Chu, X., Chung, W. and Schmidt, L.D.: Sintering of sol-gel prepared submicrometer particles studied by transmission electron microscopy. J. Am. Ceram. Soc. 76, 2115 (1993).Google Scholar
14Chen, P.L. and Chen, I.W.: Reactive cerium IV oxide powders by the homogeneous precipitation method. J. Am. Ceram. Soc. 76, 1577 (1993).CrossRefGoogle Scholar
15Purohit, R.D., Sharma, B.P., Pillai, K.T. and Tyagi, A.K.: Ultrafine ceria powders via glycine-nitrate combustion. Mater. Res. Bull. 36, 2711 (2001).CrossRefGoogle Scholar
16Arun, S.T. and Patil, K.C.: Combustion synthesis and properties of nanostructured ceria-zirconia solid solutions. Nanostruct. Mater. 10, 955 (1998).CrossRefGoogle Scholar
17Nakane, S., Tachi, T., Yoshinaka, M., Hirota, K. and Yamaguchi, O.: Characterization and sintering of reactive cerium IV oxide powders prepared by the hydrazine method. J. Am. Ceram. Soc. 80, 3221 (1997).CrossRefGoogle Scholar
18Xu, H., Gao, L., Gu, H. and Yan, D.: Synthesis of solid, spherical CeO2 particles prepared by the spray pyrolysis reaction method. J. Am. Ceram. Soc. 85, 139 (2002).CrossRefGoogle Scholar
19Zhou, Y.C., Philips, R.J. and Switzer, J.A.: Electrochemical synthesis and sintering of nanocrystalline cerium (IV) oxide powders. J. Am. Ceram. Soc. 78, 981 (1995).CrossRefGoogle Scholar
20Devi, P.S. and Maiti, H.S.: A novel auto-ignited combustion process for the synthesis of Bi-Pb-Sr-Ca-Cu-O superconductor with a Tc (o) of 125K. J. Solid State Chem. 109, 35 (1994).CrossRefGoogle Scholar
21Devi, P.S. and Maiti, H.S.: A modified citrate gel route for the synthesis of phase pure Bi2Sr2CaCu2O8 superconductor. J. Mater. Res. 9, 1357 (1994).CrossRefGoogle Scholar
22Chakraborty, A., Devi, P.S., Roy, S. and Maiti, H.S.: Low-temperature synthesis of ultrafine La0.84Sr0.16MnO3 powder by an auto-ignition process. J. Mater. Res. 9, 986 (1994).CrossRefGoogle Scholar
23Chakraborty, A., Devi, P.S. and Maiti, H.S.: Preparation of La1-xSrxMnO3 (0<x< 0.6) powder by auto ignition of carboxylate-nitrate gels. Mater. Lett. 20, 63 (1994).CrossRefGoogle Scholar
24Chakraborty, A., Devi, P.S. and Maiti, H.S.: Low-temperature synthesis and some physical properties of barium substituted lanthanum manganite (La1-xBaxMnO3). J. Mater. Res. 10, 918 (1995).CrossRefGoogle Scholar
25Chakrabarti, N. and Maiti, H.S.: Chemical synthesis of barium zirconate titanate powder by an autocombustion technique. J. Mater. Chem. 6, 1169 (1996).CrossRefGoogle Scholar
26Devi, P.S., Lee, Y., Margolis, J., Parise, J.B., Sampath, S., Herman, H. and Hanson, J.C.: Comparison of citrate-nitrate gel combustion and precursor plasma spray process for the synthesis of yittrium aluminum garnet. J. Mater. Res. 17, 2846 (2002).CrossRefGoogle Scholar
27Impedance Spectroscopy Emphasizing Solid Materials and Systems, edited by MacDonald, J.R. (John Wiley & Sons, New York, 1987)Google Scholar
28Abrantes, J.C.C., Labrincha, J.A. and Frade, J.R.: Representations of impedance spectra of ceramics. Part I. Simulated study cases. Mater. Res. Bull. 35, 955 (2000).CrossRefGoogle Scholar
29Zhan, Z., Wen, T., Tu, H. and Lu, Z.: AC impedance investigation of samarium-doped ceria. J. Electrochem. Soc. 148, A427 (2001).CrossRefGoogle Scholar
30Huang, K., Feng, M. and Goodenough, J.B.: Synthesis and electrical properties of dense Ce0.9Gd0.1O1.95 ceramics. J. Am. Ceram. Soc. 81, 357 (1998).CrossRefGoogle Scholar
31Gibson, I.R., Dransfield, G.P. and Irvine, J.T.S.: Sinterability of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity. J. Mater. Sci. 33, 4297 (1998).CrossRefGoogle Scholar
32Wang, D.Y. and Nowick, A.S.: The grain boundary effect in doped ceria solid electrolytes. J. Solid State Chem. 35, 325 (1980).CrossRefGoogle Scholar
33Tschope, A., Sommer, E. and Birringer, R.: Grain size dependent electrical conductivity of polycrystalline cerium oxide: I. Experiments. Solid State Ionics 139, 257 (2001).Google Scholar
34Bonanos, N. and Butler, E.P.: Ionic conductivity of monoclinic and tetragonal ytria-zirconia single crystals. J. Mater. Sci. Lett. 4, 561 (1985).CrossRefGoogle Scholar
35Slotwinski, R.K., Bonanos, N. and Butler, E.P.: Electrical properties of MgO+Y2O3 and CaO+Y2O3 partially stabilized zirconias. J. Mater. Sci. Lett. 4, 641 (1985).CrossRefGoogle Scholar
36Tian, C. and Chan, S.: Ionic conductivities, sintering temperatures and microstructures of bulk ceramics CeO2 doped with Y2O3. Solid State Ionics 134, 89 (2000).CrossRefGoogle Scholar
37Chiang, Y.M., Lavik, E.B. and Blom, D.A.: Defect thermodynamics and electrical properties of nanocrystalline oxides: Pure and doped CeO2. Nanostruct. Mater. 9, 633 (1997).CrossRefGoogle Scholar
38Gerhardt, R. and Nowick, A.S.: Grain-boundary effect in ceria doped trivalent cations: II. Microstructure and microanalysis. J. Am. Ceram. Soc. 69, 641 (1986).CrossRefGoogle Scholar
39Chiodelli, G., Flor, G. and Scagliotti, M.: Electrical properties of the ZrO2-CeO2 system. Solid State Ionics 91, 109 (1996).CrossRefGoogle Scholar
40Arulraj, A., Goutenoire, F., Tabellout, M., Bohnke, O. and Lacorre, P.: Synthesis and characterization of the anionic conductor system La2 Mo2 O9-0.5x Fx (x=0.02–0.30). Chem. Mater. 14, 2492 (2002).CrossRefGoogle Scholar
41Badwal, S.P.S., Ciacchi, F.T. and Drennan, J.: Investigation of the stability of ceria-gadolinia electrolytes in solid oxide fuel cell environments. Solid State Ionics 121, 253 (1999).Google Scholar