Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-08T04:49:27.215Z Has data issue: false hasContentIssue false

Synthesis and Properties of Lead Zirconate Titanate Thin Films Via Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  31 January 2011

Chih-Yi Pan
Affiliation:
Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Section 4, Taipei, Taiwan, 106, Republic of China
Yin-Lang Chen
Affiliation:
Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Section 4, Taipei, Taiwan, 106, Republic of China
Dah-Shyang Tsai*
Affiliation:
Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Section 4, Taipei, Taiwan, 106, Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ferroelectric PZT thin films were deposited on Pt and SrRuO3 substrates in a cold-wall reactor, using the Pb(C2H5)4/Zr(OBu)4/Ti(OPri)4/O2 reaction system. In comparison with Pt substrate, the growth rate of lead zirconate titanate (PZT) thin film was higher on SrRuO3. Lead content of the thin film deposited on either substrate at low temperatures (723–863 K) was much more temperature dependent than the other two metal contents. The strong temperature dependence originated from the high activation energy in the initial decomposition of Pb(C2H5)4 vapor, which was 54 kcal/mol. The surface reaction constant of lead precursor had much lower temperature dependence. The activation energy of surface reaction for PbO, estimated from deposition in a mini-chamber, was 6 kcal/mol on Pt and 9 kcal/mol on the SrRuO3 substrate. Therefore, the incorporation path of component oxide PbO, whose apparent activation energy was 31 kcal/mol on Pt and 29 kcal/mol on SrRuO3, essentially involved considerable gas-phase reaction. The PZT (50/50) thin film on SrRuO3 bottom electrode possessed a lower coercive field and a smaller remnant polarization than that on Pt. The PZT capacitor on SrRuO3 was also less vulnerable to polarization fatigue.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Scott, J.F., Ferroelectrics. Rev. 1, 1 (1998).Google Scholar
2.Scott, J.F., Ferroelectrics 206–207, 365 (1998).CrossRefGoogle Scholar
3.Al-Shareef, H.N. and Kingon, A.I., in Ferroelectric Thin Films: Synthesis and Basic Properties, edited by Araujo, C.P de, Scott, J.F., and Taylor, G.W. (Gordon and Breach Publishers, Amsterdam, The Netherlands, 1996) p. 193.Google Scholar
4.Gruverman, A., Auciello, O., and Tokumoto, H., Appl. Phys. Lett. 69, 3191 (1996).CrossRefGoogle Scholar
5.Bai, G.R., Tsu, I.F., Wang, A., Foster, C.M., Murray, C.E., and Dravid, V.P., Appl. Phys. Lett. 72, 1572 (1998).CrossRefGoogle Scholar
6.Foster, C.M., Csencsits, R., Baldo, P.M., Bai, G.R., Li, Z., Rehn, L.E., Wills, L.A., Hiskes, R., Dimos, D., and Sinclair, M.B., in Ferroelectric Thin Films IV, edited by Desu, S.B., Tuttle, B.A., Ramesh, R., and Shiosaki, T. (Mater. Res. Symp. Proc. 361, Pittsburgh, PA, 1995), p. 307.Google Scholar
7.Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V.G., Haakenaasen, R., and Fork, D.K., Appl. Phys. Lett. 63, 3592 (1993).CrossRefGoogle Scholar
8.Aggarwal, S., Dhote, A.M., Li, H., Ankem, S., and Ramesh, R., Appl. Phys. Lett. 74, 230 (1999).CrossRefGoogle Scholar
9.Aggarwal, S., Jenkins, I.G., Nagaraj, B., Kerr, C.J., Canedy, C., Ramesh, R., Velasquez, G., Boyer, L., and Evans, J.T., Appl. Phys. Lett. 75, 1787 (1999).CrossRefGoogle Scholar
10.Hong, J.W., Jo, W., Kim, D.C., Cho, S.M., Nam, H.J., Lee, H.M., and Bu, J.U., Appl. Phys. Lett. 75, 3183 (1999).CrossRefGoogle Scholar
11.Jo, W., Kim, D.C., and Hong, J.W., Appl. Phys. Lett. 76, 390 (2000).CrossRefGoogle Scholar
12.Tiwari, P., Zheleva, T., and Narayan, J., Appl. Phys. Lett. 63, 30 (1993).CrossRefGoogle Scholar
13.Stolichnov, I., Tagantsev, A., Setter, N., Cross, J.S., and Tsukada, M., Appl. Phys. Lett. 75, 1790 (1999).CrossRefGoogle Scholar
14.Liu, K.S., Tseng, T.F., and Lin, I.N., Appl. Phys. Lett. 72, 1182 (1998).CrossRefGoogle Scholar
15.Funakubo, H., Hioki, T., Matsuyama, K., Shinozaki, K., and Mizutani, N., J. Chem. Vapor Dep. 2, 218 (1994).Google Scholar
16.Norga, G.J., Fe, L., Wouters, D.J., and Maes, H.E., Appl. Phys. Lett. 76, 1318 (2000).CrossRefGoogle Scholar
17.Aggarwal, S., Perusse, S.R., Kerr, C.J., Ramesh, R., Romero, D.B., Evans, J.T., Boyer, L., and Velasquez, G., Appl. Phys. Lett. 76, 918 (2000).CrossRefGoogle Scholar
18.Higashi, N., Okuda, N., and Funakubo, H., Jpn. J. Appl. Phys. 9, 2780 (2000).CrossRefGoogle Scholar
19.Kim, T.Y., Kim, D., and Chung, C.W., Jpn. J. Appl. Phys. 36, 6494 (1997).CrossRefGoogle Scholar
20.Keijser, M. de and Dormans, G.J.M., MRS Bull. June, 37 (1996).Google Scholar
21.Shapiro, H. and Frey, F.W., The Organic Compounds of Lead (Wiley, New York, 1968), p. 97.Google Scholar
22.Okada, M., Tominaga, K., Araki, T., Katayama, S., and Sakashita, Y., Jpn. J. Appl. Phys. 29, 718 (1990).CrossRefGoogle Scholar
23.Smith, G.R. and Patrick, R., Int. J. Chem. Kinet. 15, 167 (1983).CrossRefGoogle Scholar
24.Eom, C.B., Dover, R.B. Van, Phillips, J.M., Werder, D.J., Marshall, J.H., Chen, C.H., Cava, R.J., Fleming, R.M., and Fork, D.K., Appl. Phys. Lett. 63, 2570 (1993).CrossRefGoogle Scholar
25.Dawber, M. and Scott, J.F., Appl. Phys. Lett. 76, 1060 (2000).CrossRefGoogle Scholar
26.Fujisawa, H., Nakashima, S., Kaibara, K., Shimizu, M., and Niu, H., Jpn. J. Appl. Phys. 38, 5392 (1999).CrossRefGoogle Scholar
27.Cross, J., Fujiki, M., Tsukada, M., Matsuura, K., Otani, S., Tomotani, M., Kataoka, Y., Kotaka, Y., and Goto, Y., Integr. Ferroelectr. 25, 265 (1999).CrossRefGoogle Scholar
28.Kobune, M., Matsuura, O., Matsuzaki, T., Mineshige, A., Fujii, S., Fujisawa, H., Shimizu, M., and Niu, H., Jpn. J. Appl. Phys. 39, 5451 (2000).CrossRefGoogle Scholar