Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T12:04:19.389Z Has data issue: false hasContentIssue false

Synthesis and layer-by-layer self-assembly of titania nanosheets controllably doped with binary transition metal ions

Published online by Cambridge University Press:  16 May 2011

Xiaoping Dong*
Affiliation:
Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, Zhejiang, China
Jie Fu
Affiliation:
Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, Zhejiang, China
Fengna Xi
Affiliation:
Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, Xiasha Higher Education Zone, Hangzhou, Zhejiang, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Here, we describe the synthesis of novel titania nanosheets controllably doped with binary transition metal ions and their layer-by-layer self-assembly. The tailored Mn and Fe doping in exfoliated Ti0.6Mnx/2Fe(0.8-x)/2O2 (x = 0.0–0.4) nanosheets is achieved by systematically changing the molar ratio of Mn/Fe in K0.8Ti1.2MnxFe0.8-xO4 using a codoping strategy. The protonated layered crystals exhibit a delaminated behavior in the tetrabutylammonium hydroxide solution and are exfoliated into colloidal single sheets, which are characterized by a large lateral size and a thickness in molecular dimension. The resulted nanosheets are able to be layer-by-layer deposited with oppositely charged polymers into a composite organic/inorganic system.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bak, T., Nowotny, J., Rekas, M., and Scorrell, G.G.: Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrogen Energy 27, 991 (2002).CrossRefGoogle Scholar
2.Guillard, C., Horikoshi, S., Watanabe, N., Hidaka, H., and Pichat, P.: Photocatalytic degradation mechanism for heterocyclic derivatives of triazolidine and triazole. J. Photochem. Photobiol. Chem. 149, 155 (2002).CrossRefGoogle Scholar
3.Coronado, J.M., Zorn, M.E., Tejedor-Tejedor, I., and Anderson, M.A.: Photocatalytic oxidation of ketones in the gas phase over TiO2 thin films: A kinetic study on the influence of water vapor. Appl. Catal., B 43, 329 (2003).CrossRefGoogle Scholar
4.Doucet, N., Zahraa, O., and Bouchy, M.: Kinetics of the photocatalytic degradation of benzene. Catal. Today 122, 168 (2007).CrossRefGoogle Scholar
5.Zakrzewska, K.: Gas sensing mechanism of TiO2-based thin films. Vacuum 74, 335 (2004).CrossRefGoogle Scholar
6.Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., and Koinuma, H.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854 (2001).CrossRefGoogle ScholarPubMed
7.Park, W.K., Ortega-Hertogs, R.J., Moodera, J.S., Punnoose, A., and Seehra, M.S.: Semiconducting and ferromagnetic behavior of sputtered Co-doped TiO2 thin films above room temperature. J. Appl. Phys. 91, 8093 (2002).CrossRefGoogle Scholar
8.Kluson, P., Kment, S., Bartkova, H., and Hubicka, Z.: Thin functional films of photoactive TiO2 nanoparticles, in New Research on Thin Solid Films, edited by Benjamin, M.G. (Nova Science, New York, 2007) p. 65.Google Scholar
9.Tang, H., Prasad, K., Sanjines, R., Schmid, P.E., and Levy, F.: Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 75, 2042 (1994).CrossRefGoogle Scholar
10.Tong, T., Zhang, J., Tian, B., Chen, F., and He, D.: Preparation of Fe doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J. Hazard. Mater. 155, 572 (2008).CrossRefGoogle Scholar
11.Fujishima, A., Zhang, X., and Tryk, D.A.: Photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515 (2008).CrossRefGoogle Scholar
12.Choi, W.Y., Termin, A., and Hoffmann, M.R.: The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 84, 13669 (1994).CrossRefGoogle Scholar
13.Hong, N.H., Preltier, W., Sakai, J., and Hassini, A.: Fe- and Ni-doped TiO2 thin films grown on LaAlO3 and SrTiO3 substrates by laser ablation. Appl. Phys. Lett. 84, 2850 (2004).CrossRefGoogle Scholar
14.Xu, J.P., Lin, Y.B., Lu, Z.H., Liu, X.C., Lu, Z.L., Wamg, J.F., Zou, W.Q., Lv, L.Y., Zhang, F.M., and Du, Y.W.: Enhanced ferromagnetism in Mn-doped TiO2 films during the structural phase transition. Solid State Commun. 140, 514 (2006).CrossRefGoogle Scholar
15.Wang, Z.J., Tang, J.K., Zhang, H.G., Golub, V., Spinu, L., and Tung, L.D.: Ferromagnetism in chromium-doped reduced-rutile titanium dioxide thin films. J. Appl. Phys. 95, 7381 (2004).CrossRefGoogle Scholar
16.Henglein, A.: Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89, 1861 (1989).CrossRefGoogle Scholar
17.Treacy, M.M.J., Rice, S.B., Jacobson, A.J., and Lewandowski, T.: An electron microscopy study of delamination in dispersions of the perovskite-related layered phases K[Ca2Nan-3NbnO3n-1]: Evidence for single layer formation. Chem. Mater. 2, 279 (1990).CrossRefGoogle Scholar
18.Sasaki, T., Watanabe, M., Hashizume, H., Yamada, H., and Nakazawa, H.: Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it. J. Am. Chem. Soc. 118, 8329 (1996).CrossRefGoogle Scholar
19.Sasaki, T. and Watanabe, M.: Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate. J. Am. Chem. Soc. 120, 4682 (1998).CrossRefGoogle Scholar
20.Abe, R., Shinohara, K., Tanaka, A., Hara, M., Kondo, J.N., and Domen, K.: Preparation of porous niobium oxide by the exfoliation of K4Nb6O17 and its photocatalytic activity. J. Mater. Res. 13, 861 (1998).CrossRefGoogle Scholar
21.Liu, Z.H., Ooi, K., Kanoh, H., Tang, W.P., and Tomida, T.: Swelling and delamination behaviors of birnessite-type manganese oxide by intercalation of tetraalkylammonium ions. Langmuir 16, 4154 (2000).CrossRefGoogle Scholar
22.Omomo, Y., Sasaki, T., Wang, L., and Watanabe, M.: Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J. Am. Chem. Soc. 125, 3568 (2003).CrossRefGoogle ScholarPubMed
23.Fukuda, K., Nakai, I., Ebina, Y., Ma, R., and Sasaki, T.: Colloidal unilamellar layers of tantalum oxide with open channels. Inorg. Chem. 46, 4787 (2007).CrossRefGoogle ScholarPubMed
24.Fukuda, K., Akatsuka, K., Ebina, Y., Ma, R., Takada, K., Nakai, I., and Sasaki, T.: Exfoliated nanosheet crystallite of cesium tungstate with 2D pyrochlore structure: Synthesis, characterization, and photochromic properties. ACS Nano 2, 1689 (2008).CrossRefGoogle ScholarPubMed
25.Sakai, N., Ebina, Y., Takada, K., and Sasaki, T.: Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J. Am. Chem. Soc. 126, 5851 (2004).CrossRefGoogle ScholarPubMed
26.Sasaki, T., Ebina, Y., Tanaka, T., Harada, M., and Watanabe, M.: Layer-by-layer assembly of titania nanosheet/polycation composite films. Chem. Mater. 13, 4661 (2001).CrossRefGoogle Scholar
27.Harada, M., Sasaki, T., Ebina, Y., and Watanabe, M.: Preparation and characterizations of Fe- or Ni-substituted titania nanosheets as photocatalysts. J. Photochem. Photobiol. Chem. 148, 273 (2002).CrossRefGoogle Scholar
28.Osada, M., Ebina, Y., Takada, K., and Sasaki, T.: Gigantic magneto-optical effects in multilayer assemblies of two-dimensional titania nanosheets. Adv. Mater. 18, 295 (2006).CrossRefGoogle Scholar
29.Osada, M., Ebina, Y., Fukuda, K., Ono, K., Takada, K., Yamaura, K., Takayama-Muromachi, E., and Sasaki, T.: Ferromagnetism in two-dimensional Ti0.8Co0.2O2 nanosheets. Phys. Rev. B 73, 153301 (2006).CrossRefGoogle Scholar
30.Osada, M., Itose, M., Ebina, Y., Ono, K., Ueda, S., Kobayashi, K., and Sasaki, T.: Gigantic magneto-optical effects induced by (Fe/Co)-cosubstitution in titania nanosheets. Appl. Phys. Lett. 92, 253110 (2008).CrossRefGoogle Scholar
31.Dong, X., Osada, M., Ueda, H., Ebina, Y., Kotani, Y., Ono, K., Ueda, S., Kobayashi, K., Takada, K., and Sasaki, T.: Synthesis of Mn-substituted titania nanosheets and ferromagnetic thin films with controlled doping. Chem. Mater. 21, 4366 (2009).CrossRefGoogle Scholar
32.Sasaki, T., Kooli, F., Iida, M., Michiue, Y., Takenouchi, S., Yajima, Y., Izumi, F., Chakoumakos, B.C., and Watanabe, M.: A mixed alkali metal titanate with the lepidocrocite-like layered structure. Preparation, crystal structure, protonic form, and acid-base intercalation properties. Chem. Mater. 10, 4123 (1998).CrossRefGoogle Scholar
33.Sasaki, T. and Watanabe, M.: Semiconductor nanosheet crystallites of quasi-TiO2 and their optical properties. J. Phys. Chem. B 101, 10159 (1997).CrossRefGoogle Scholar
34.Fukuda, K., Nakai, I., Oishi, C., Nomura, M., Harada, M., Ebina, Y., and Sasaki, T.: Nanoarchitecture of semiconductor titania nanosheets revealed by polarization-dependent total reflection fluorescence X-ray absorption fine structure. J. Phys. Chem. B 108, 13088 (2004).CrossRefGoogle Scholar
35.Li, L., Ma, R., Ebina, Y., Iyi, N., and Sasaki, T.: Positively charged nanosheets derived via total delamination of layered double hydroxides. Chem. Mater. 17, 4386 (2005).CrossRefGoogle Scholar
36.Liu, Z., Ma, R., Osada, M., Iyi, N., Ebina, Y., Takada, K., and Sasaki, T.: Synthesis, anion exchange, and delamination of Co–Al layered double hydroxide: Assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 128, 4872 (2006).CrossRefGoogle ScholarPubMed
37.Ma, R., Liu, Z., Takada, K., Iyi, N., Bando, Y., and Sasaki, T.: Synthesis and exfoliation of Co2+-Fe3+ layered double hydroxides: An innovative topochemical approach. J. Am. Chem. Soc. 129, 5257 (2007).CrossRefGoogle ScholarPubMed
38.Ma, R., Takada, K., Fukuda, K., Iyi, N., Bando, Y., and Sasaki, T.: Topochemical synthesis of monometallic (Co2+-Co3+) layered double hydroxide and its exfoliation into positively charged Co(OH)2 nanosheets. Angew. Chem. Int. Ed. 47, 86 (2008).CrossRefGoogle ScholarPubMed