Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T00:00:46.375Z Has data issue: false hasContentIssue false

Synthesis and dielectric properties of barium tantalates and niobates with complex perovskite structure

Published online by Cambridge University Press:  31 January 2011

T. Kolodiazhnyi
Affiliation:
Department of Materials Science & Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
A. Petric*
Affiliation:
Department of Materials Science & Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
A. Belous
Affiliation:
Department of Solid State Chemistry, Institute of General and Inorganic Chemistry, 32/43 Palladina Ave., Kyiv-142, Ukraine
O. V'yunov
Affiliation:
Department of Solid State Chemistry, Institute of General and Inorganic Chemistry, 32/43 Palladina Ave., Kyiv-142, Ukraine
O. Yanchevskij
Affiliation:
Department of Solid State Chemistry, Institute of General and Inorganic Chemistry, 32/43 Palladina Ave., Kyiv-142, Ukraine
*
a)Address all correspondence to this author.[email protected]
Get access

Abstract

Phase composition, degree of cation ordering, and dielectric properties of complex perovskites with general formula Ba(B' 1/3B"2/3)O3, where B′ = Mg, Zn, and Ni and B" = Nb and Ta, were analyzed. It was found that all the studied complex perovskites attained high degrees of 1:2 cation ordering at temperatures specific to each composition. A high temperature order–disorder phase transition in Ba(Zn1/3Nb2/3)O3 occurred below 1380 °C. Ba(Ni1/3Nb2/3)O3 (BNN) and Ba(Mg1/3Nb2/3)O3 (BMN) pervoskites remained 100% ordered at temperatures as high as 1500 and 1620 °C, respectively. It was found that in BMN and BNN extrinsic factors, such as the second phase (i.e., Ba3Nb5O15) and point defects, dominated the dielectric loss at microwave frequencies. Ba(Mg1/3Ta2/3)O3 (BMT) remained single phase up to 1630 °C. Above this temperature, the Ba3Ta5O15 second phase was detected. A decrease in the 1:2 cation ordering and increase of dielectric loss in BMT occurred at sintering temperatures above 1590 °C. It was also revealed by electron paramagnetic resonance that all samples studied contained a substantial amount of paramagnetic point defects. These defects contributed to extrinsic dielectric loss at microwave frequencies, thus degrading the Q factor.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ceramic Transaction: Materials and Processes for Wireless Communication, edited by Negas, T. and Ling, H. (American Ceramic Society Publications, Westerville, OH, 1995), Vol. 53.Google Scholar
2.Klein, N., Scholen, A., Tellmann, N., Zuccaro, C., and Urban, K.W., IEEE Trans. Microwave Theory Tech. 44, 1369 (1996).CrossRefGoogle Scholar
3.Davies, P.K., Tong, J., and Negas, T., J. Am. Ceram. Soc. 80, 1727 (1997).CrossRefGoogle Scholar
4.Matsumoto, H., Tamura, H., and Wakino, K., Jpn. J. Appl. Phys. 30, 2347 (1991).CrossRefGoogle Scholar
5.Petzelt, J. and Setter, N., Ferroelectrics 150, 89 (1993).CrossRefGoogle Scholar
6.Rong, G., Newman, N., Shaw, B., and Cronin, D., J. Mater. Res. 14, 4011 (1999).CrossRefGoogle Scholar
7.Gurevich, V.L. and Tagantsev, A.K., Adv. Phys. 40, 719 (1991).CrossRefGoogle Scholar
8.Ra, S-H. and Phule, P.P., J. Mater. Res. 14, 4259 (1999).CrossRefGoogle Scholar
9.Fang, Y., Hu, A., Ouyang, S., and Oh, J., J. Eur. Ceram. Soc. 21, 2745 (2001).CrossRefGoogle Scholar
10.MuRata Electronics North America, RF and Microwave Products Catalog (1996).Google Scholar
11.Nomura, S., Ferroelectrics 49, 61 (1983).CrossRefGoogle Scholar
12.Akbas, M.A. and Davies, P.K., J. Am. Ceram. Soc. 81, 670 (1998).CrossRefGoogle Scholar
13.Lee, H.J., Park, H.M., Cho, Y.K., Ryu, H., Paik, J.H., Nahm, S., and Byun, J.D., J. Am. Ceram. Soc. 83, 937 (2000).CrossRefGoogle Scholar
14.Lee, H.J., Park, H.M., Song, Y.W., and Cho, Y.K., J. Am. Ceram. Soc. 84, 2105 (2001).CrossRefGoogle Scholar
15.Tamura, H., Konoike, T., Sakabe, Y., and Wakino, K., J. Am. Ceram. Soc. 67, 59 (1984).CrossRefGoogle Scholar
16.Banno, H., Mizuno, F., Takeuchi, T., Tsunooka, T., and Ohya, K., Proceedings of the 5th Meeting on Ferroelectric Materials and Their Applications (Jpn. J. Appl. Phys. 21, Supplement 24-3, 1985), p. 87.CrossRefGoogle Scholar
17.Onoda, M., Kuwata, J., Kaneta, K., Toyama, K., and Nomura, S., Jpn. J. Appl. Phys. 21, 1707 (1982).CrossRefGoogle Scholar
18.Galasso, F. and Pyle, J., J. Phys. Chem. 67, 1561 (1963).CrossRefGoogle Scholar
19.Hiuga, T. and Matsumoto, K., Jpn. J. Appl. Phys. 28, 56 (1989).CrossRefGoogle Scholar
20.Barber, D.J., Moulding, K.M., Zhou, J., and Li, M.Q., J. Mater. Sci. 32, 1531 (1997).CrossRefGoogle Scholar
21.Yoshioka, H., Bull. Chem. Soc. Jpn. 60, 3433 (1987).CrossRefGoogle Scholar
22.Akbas, M.A. and Davies, P.K., J. Am. Ceram. Soc. 81, 1061 (1998).CrossRefGoogle Scholar
23.Hong, K.S., Kim, I-T., and Kim, C-D., J. Am. Ceram. Soc. 79, 3218 (1996).CrossRefGoogle Scholar
24.Molodetsky, I. and Davies, P.K., J. Eur. Ceram. Soc. 21, 2587 (2001).CrossRefGoogle Scholar
25.Venkatesh, J., Sivasubramanian, V., Subramanian, V., and Murthy, V.R.K., Mater. Res. Bull. 35, 1325 (2000).CrossRefGoogle Scholar
26.Qazi, I., Reaney, I.M., and Lee, W.E., J. Eur. Ceram. Soc. 21, 2613 (2001).CrossRefGoogle Scholar
27.Takahashi, T., Wu, E.J., and Ceder, G., J. Mater. Res. 15, 2061 (2000).CrossRefGoogle Scholar
28.Takahashi, T., Jpn. J. Appl. Phys. 39, 5637 (2000).CrossRefGoogle Scholar
29.Kolodiazhnyi, T.V., Petric, A., Johari, G.P., and Belous, A.G., J. Eur. Ceram. Soc. 22, 2013 (2002).CrossRefGoogle Scholar
30.Kajfez, D. and Guillon, P., Dielectric Resonators (Artech Hause, Dedham, MA, 1986).Google Scholar
31.Chen, X.M., Suzuki, Y., and Sato, N., J. Mater. Sci., Mater. Electron. 5, 244 (1994).Google Scholar
32.Youn, H-J., Kim, K-Y., and Kim, H., Jpn. J. Appl. Phys. 35, 3947 (1996).CrossRefGoogle Scholar
33.Feger, C.R. and Ziebarth, R.P., Chem. Mater. 7, 373 (1995).CrossRefGoogle Scholar
34.Hessen, B., Sunshine, S.A., Siegrist, T., Fiory, A.T., and Waszczak, J.V., Chem. Mater. 3, 528 (1991).CrossRefGoogle Scholar
35.Nomura, S., Toyama, K., and Kaneta, K., Jpn. J. Appl. Phys. 21, L624 (1982).CrossRefGoogle Scholar
36.Matsumoto, K., Hiuga, T., Takada, K., and Ichimura, H., 6th IEEE International Symposium on Applications of Ferroelectrics (IEEE, Piscataway, NJ, 1986), p. 118.CrossRefGoogle Scholar
37.Desu, S.B. and O'Bryan, H.M., J. Am. Ceram. Soc. 68, 546 (1985).CrossRefGoogle Scholar
38.Kawashima, S., Nishada, N., Ueda, I., and Ouchi, H., J. Am. Ceram. Soc. 66, 421 (1983).CrossRefGoogle Scholar
39.Galasso, F.S., Structure, Properties and Preparation of Perovskite-Type Compounds (Pergamon Press, Oxford, U.K., 1969).Google Scholar
40.Lee, C-C., Chou, C-C., and Tsai, D-S., J. Am. Ceram. Soc. 80, 2885 (1997).CrossRefGoogle Scholar
41.Bartoll, J. (private communication).Google Scholar