Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T09:37:32.928Z Has data issue: false hasContentIssue false

Synthesis and Characterization of the Inorganic Ion Exchanger Based on Titanium 2-carboxyethylphosphonate

Published online by Cambridge University Press:  31 January 2011

Anatoly I. Bortun
Affiliation:
Department of Chemistry, Texas A&M University, College Station, Texas 77843
Lyudmila Bortun
Affiliation:
Department of Chemistry, Texas A&M University, College Station, Texas 77843
Abraham Clearfield
Affiliation:
Department of Chemistry, Texas A&M University, College Station, Texas 77843
Enrique Jaimez
Affiliation:
Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain
María A. Villa-García
Affiliation:
Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain
José R. García
Affiliation:
Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain
Julio Rodríguez
Affiliation:
Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain
Get access

Abstract

An inorganic ion exchanger based on titanium 2-carboxyethylphosphonate (TiPC) has been synthesized by reaction between solutions of TiCl3 and 2-carboxyethylphosphonic acid at elevated temperature. The solid was characterized by chemical analysis, 31P MAS NMR, x-ray powder diffraction, IR spectroscopy, and TG analysis. It was found that TiPC is a highly crystalline layered solid with the interlayer distance 13.1 Å, and exhibits a high thermal stability. The intercalation of n-alkylamines and the ion exchange properties of TiPC toward alkali, alkaline earth, and some transition metal cations have been studied. The exchanger shows high affinity to alkaline earth metal cations and some di- and trivalent cations.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Amphlett, C. B., Inorganic Ion Exchangers (Elsevier, Amsterdam, 1964).Google Scholar
2.Vesely, V. and Pekarek, V., Talanta 19, 219 (1972).CrossRefGoogle Scholar
3.Clearfield, A., Nancollas, G. H., and Blessing, R. H., in Ion Exchange and Solvent Extraction, edited by Marinsky, J. A. and Marcus, Y. (Marcel Dekker, New York, 1973), Vol. 4.Google Scholar
4.Inorganic Ion Exchange Materials, edited by Clearfield, A. (CRC Press, Boca Raton, FL, 1982).Google Scholar
5.Alberti, G., in Recent Development in Ion Exchange, edited by Williams, P. A. and M. J. Hudson (Elsevier, London, 1987).Google Scholar
6.Yamanaka, S., Inorg. Chem. 15, 2811 (1976).CrossRefGoogle Scholar
7.Alberti, G., Costantino, U., Allulli, S., and Tomassini, N., J. Inorg. Nucl. Chem. 40, 1113 (1978).CrossRefGoogle Scholar
8.Dines, M. B. and DiGiacomo, P. M., Inorg. Chem. 20, 92 (1981).CrossRefGoogle Scholar
9.DiGiacomo, P. M. and Dines, M. B., Polyhedron 1, 61 (1982).CrossRefGoogle Scholar
10.Dines, M. B. and Griffit, P. C., Polyhedron 2, 607 (1983).CrossRefGoogle Scholar
11.Alberti, G., Casciola, M., Costantino, U., and Fabiani, D., in Membranes and Membrane Processes, edited by Drioli, E. and Nakagaki, M. (Plenum Publishing Corp., New York, 1986).Google Scholar
12.Clearfield, A., Chem. Rev. 88, 125 (1988).CrossRefGoogle Scholar
13.Clearfield, A., Comments Inorg. Chem. 10, 89 (1990).CrossRefGoogle Scholar
14.Alberti, G., Costantino, U., and Giovagnotti, M. L. Luciani, J. Chromatogr. 180, 45 (1978).CrossRefGoogle Scholar
15.Kijima, T., Watanabe, S., and Machida, M., Inorg. Chem. 33, 2586 (1994).CrossRefGoogle Scholar
16.Poojary, D. M., Zhang, B., and Clearfield, A., Angew. Chem. 33, 2324 (1994).CrossRefGoogle Scholar
17.Dzyuba, E. D., Pechkovskii, V. V., and Salonets, G. I., Zh. Prikl. Spectrosk. 21, 127 (1974).Google Scholar
18.Bortun, A., Strelko, V. V., Jaimez, E., García, J. R., and Rodríguez, J., Chem. Mater. 7, 249 (1995).CrossRefGoogle Scholar
19.Uglyanskaya, V. A., Chikin, G. A., Selemenev, V. F., and Zavyalova, G. A., Infra-red Spectroscopy of the Ion Exchange Materials (Voronezh, Moscow, 1989).Google Scholar
20.Alberti, G., Costantino, U., Casciola, M., Vivani, R., and Peraio, A., Solid State Ionics 46, 61 (1991).CrossRefGoogle Scholar
21.Kornyei, J., Szirtes, L., and Costantino, U., J. Radioanal. Chem. 89, 331 (1985).CrossRefGoogle Scholar
22.Brunauer, S., Demig, L. S., Demig, W. S., and Teller, E., J. Am. Chem. Soc. 62, 1723 (1940).CrossRefGoogle Scholar
23.Lippens, B. C. and de Boer, J. H., J. Catal. 4, 319 (1965).CrossRefGoogle Scholar
24.Ashirov, A., Ion Exchange Purification of Wastes, Technological Solutions and Gases (Chemistry, Leningrad, 1983).Google Scholar
25.Saldadze, K. M. and Kopylova-Valova, V. D., Complexbinding Ion Exchangers (Chemistry, Moscow, 1980).Google Scholar
26.Clearfield, A. and Frianeza, T. N., J. Inorg. Nucl. Chem. 40, 1925 (1978).CrossRefGoogle Scholar
27.García, J. R., Suárez, M., Llavona, R., and Rodríguez, J., J. Chem. Soc., Dalton Trans., 2605 (1984).CrossRefGoogle Scholar
28.Borton, A. I., García, J. R., Budovitskaya, T. A., Strelko, V. V., and Rodríguez, J., Mater. Res. Bull. 31, 487 (1996).CrossRefGoogle Scholar
29.Alberti, G., Costantino, U., and Gupta, J. P., J. Inorg. Nucl. Chem. 36, 2109 (1974).CrossRefGoogle Scholar