Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T05:28:44.809Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Sr1−xBaxBi2Ta2O9 Materials

Published online by Cambridge University Press:  31 January 2011

R. E. Melgarejo
Affiliation:
Physics Department, University of Puerto Rico, Mayaguez, Puerto Rico 00681-9016
M. S. Tomar*
Affiliation:
Physics Department, University of Puerto Rico, Mayaguez, Puerto Rico 00681-9016
P. S. Dobal
Affiliation:
Physics Department, University of Puerto Rico, San Juan, Puerto Rico 00931-3343
R. S. Katiyar
Affiliation:
Physics Department, University of Puerto Rico, San Juan, Puerto Rico 00931-3343
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Due to its endurance to ferroelectric fatigue, SrBi2Ta2O9 (SBT) has been extensively investigated. We report here the synthesis of Sr1−xBaxBi2Ta2O9 (x = 0.0, 0.1, 0.5, 1.0) using a solution-based route. The precursors used in this work were the salts of strontium, barium, bismuth, and tantalum ethoxide. X-ray diffraction and Raman spectroscopic studies indicated the formation of complete solid solution system for Sr1−xBaxBi2Ta2O9. This material system may provide interesting properties relevant to microwave tuning and ferroelectric memory applications, which are under investigation.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Zheludev, I.S., Physics of Crystalline Dielectrics (Plenum, New York, 1971).Google Scholar
2.Damajanovic, D., Rep. Prog. Phys. 61, 1267 (1998).Google Scholar
3.Tomar, M.S., Kuenhold, K.A., and Katiyar, R.S., J. Integr. Ferroelectr. 28–29, (2000).Google Scholar
4.Paz de Araujo, C.A., Cuchiaro, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F., Nature 374, 627 (1995).Google Scholar
5.Amanuma, K., Hase, T., and Miyasaka, Y., Appl. Phys. Lett. 66, 221 (1995).Google Scholar
6.Lee, J.S., Kim, H.H., Kwon, H.J., and Jeong, Y.W., Appl. Phys. Lett. 73, 166 (1998).Google Scholar
7.Boyle, T.J., Buchheit, C.D., Rodriguez, M.A., Al-Shareef, H.N., Hernandez, B.A., Scott, B., and Ziller, J.W., J. Mater. Res. 11, 2274 (1996).Google Scholar
8.Joshi, P.C., Ryu, S.O., Zhang, X., and Desu, S.B., Appl. Phys. Lett. 70, 1080 (1997).Google Scholar
9.Foschini, C.R., Joshi, P.C., Varela, J.A., and Desu, S.B., J. Mater. Res. 14, 1860 (1999).Google Scholar
10.Newnham, R.E., Wolfe, R.W., Horsey, R.S., Diez-Colon, F.A., and Kay, M.I., Mater. Res. Bull. 8, 1183 (1973).Google Scholar
11.Rae, A.D., Thompson, J.G., and Withers, R.L., Acta Crystallogr. B48, 418 (1992).Google Scholar
12.Moret, M.P., Zallen, R., Newnham, R.E., Joshi, P.C., and Desu, S.B., Phys. Rev. B57, 5715 (1998).Google Scholar
13.Graves, P.R., Hua, G., Myhra, S., and Thompson, J.G., J. Solid-State Chem. 144, 112 (1995).Google Scholar
14.Kojima, S., Saitoh, I., and Yamamoto, T., in Proceedings 11th IEEE International Symposium on Applications of Ferroelectrics, Montreux, Switzerland (IEEE Catalog No. 98CH36245, New York, 1998), p. 471.Google Scholar
15.Shimakawa, Y., Kubo, Y., Nakagawa, Y., Kamiyama, T., Asano, H., and Izumi, F., Appl. Phys. Lett. 74, 1908 (1999).Google Scholar
16.Subbarao, E.C., J. Phys. Chem. Solids 23, 665 (1962).Google Scholar