Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T06:14:58.578Z Has data issue: false hasContentIssue false

Synthesis and characterization of PbTiO3 powders and heteroepitaxial thin films by hydrothermal synthesis

Published online by Cambridge University Press:  31 January 2011

A. T. Chien
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106
J. Sachleben
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106
J. H. Kim
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106
J. S. Speck
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106
F. F. Lange
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106
Get access

Abstract

PbTiO3 powders and heteroepitaxial thin films were produced by the hydrothermal method at 110–200 °C using different bases (Na–, K–, Rb–, Cs–, TMA–, and TBA–OH). Microstructural characterization showed that the tetragonal perovskite films were epitaxial on the SrTiO3 substrates, with a c-axis out-of-plane orientation. Sequential growth experiments showed that the growth initiates by the formation of 100 nm {100} faceted PbTiO3 islands followed by coalescence. Small cation bases (Na–, K–, Rb–OH) produced 1.5-μm {100} faceted blocky powders, whereas larger cation bases (Cs–, TMA–, and TBA–OH) formed fewer 500-nm interpenetrating platelets. Nuclear magnetic resonance results showed cation incorporation in the perovskite structure with local disorder on the Pb sites increasing cation size.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Roy, R. and Tuttle, O.F., Phys. Chem. Earth. 1, 138 (1956).CrossRefGoogle Scholar
2.Baughman, R.J., J. Cryst. Growth 112, 753 (1991).CrossRefGoogle Scholar
3.Barrer, R.M., Hydrothermal Chemistry of Zeolites (Academic Press, London, 1982).Google Scholar
4.Lilley, E. and Wusirika, R.R., U.S. Patent No. 4 764 493 (August 1998).Google Scholar
5.Chien, A.T., Speck, J.S., Lange, F.F., Daykin, A., and Levi, C., J. Mater. Res. 10, 1784 (1995).CrossRefGoogle Scholar
6.Xu, W., Zheng, L., Xin, H., Lin, C., and Okuyama, M., J. Mater. Res. 11, 821 (1996).CrossRefGoogle Scholar
7.Chien, A.T., Speck, J.S., and Lange, F.F., J. Mater. Res. 12, 1176 (1997).CrossRefGoogle Scholar
8.Goh, G. and Lange, F.F. (unpublished).Google Scholar
9.Chien, A.T., Zhao, L., Colic, M., Speck, J.S., and Lange, F.F., J. Mater. Res. 13, 649 (1998).CrossRefGoogle Scholar
10.Moon, J., Li, T., Randall, C., and Adair, J., J. Mater. Res. 12, 189 (1997).CrossRefGoogle Scholar
11.Lencka, M., and Riman, R., J. Am. Ceram. Soc. 76, 2649 (1993).CrossRefGoogle Scholar
12.Cheng, H., Ma, J., Zhao, Z., Qaing, D., Li, Y., and Yao, X., J. Am. Ceram. Soc. 75, 1123 (1992).CrossRefGoogle Scholar
13.Li, Y. and Yao, X., Sens. Actuators, A 35, 255 (1993).CrossRefGoogle Scholar
14.Suzuki, M., Uedaira, S., Masuya, H., and Tamura, H., in Ceramics Powder Science II, edited by Messing, G., Fuller, E. Jr, and Hausner, H. (American Ceramic Society, Westerville, OH, 1988), Vol. 1, p. 163.Google Scholar
15.Yanagisawa, K., Kanai, H., and Yamashita, Y., Jpn. J. Appl. Phys. 34, 5346 (1995).CrossRefGoogle Scholar
16.Kikuta, K., Tosa, A., Yogo, T., and Hirano, S., Chem. Lett. 12, 2267 (1994).CrossRefGoogle Scholar
17.Beal, K., in Advances in Ceramics, edited by Messing, G., Mazdiyasni, K., McCauley, J., and Haber, R. (American Ceramic Society, Westerville, OH, 1987), Vol. 21, p. 33.Google Scholar
18.Tsurumi, T., Ichihara, T., Ochiai, T., Asaga, K., and Daimon, M., Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 97, 1116 (1989).CrossRefGoogle Scholar
19.Cho, W. and Yoshimura, M., J. Mater. Res. 12, 833 (1997).CrossRefGoogle Scholar
20.Shimomura, K., Tsurumi, T., Ohba, Y., and Daimon, M., Jpn. J. Appl. Phys. 31, 2174 (1991).CrossRefGoogle Scholar
21.Kawano, T., Nagao, K., and Hashimoto, K., Integrated Ferroelectrics 12, 263 (1996).CrossRefGoogle Scholar
22.Seifert, A., Speck, J.S., and Lange, F.F., J. Mater. Res. 10, 680 (1995).CrossRefGoogle Scholar
23.Sachleben, J., Chien, A.T., and Lange, F.F. (unpublished).Google Scholar
24.Tan, Q., Xu, Z., Li, J., and Viehland, D., J. Appl. Phys. 80, 5866 (1996).CrossRefGoogle Scholar
25.Haertling, G. and Land, C., J. Am. Ceram. Soc. 54, 1 (1971).CrossRefGoogle Scholar
26.Jaffe, B., Cook, W., and Jaffe, H., Piezoelectric Ceramics (Academic Press, New York, 1971).Google Scholar
27.Ahmand, A., Wheat, T., Canaday, J., Kuriakose, A., Prasad, S., and Varma, S. in ISAF' 92. Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics, edited by Liu, M., Safari, A., Kingon, A., and Haertling, G. (IEEE, New York, NY, 1992), p. 516.CrossRefGoogle Scholar
28.Wang, H., Xue, W., Lu, P., Shen, D., Zhang, Q., and Zhao, M. in ISAF' 92. Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics, edited by Liu, M., Safari, A., Kingon, A., and Haertling, G. (IEEE, New York, NY, 1992), p. 548.CrossRefGoogle Scholar
29.Ito, Y., Nagatsuma, K., Takeuchi, H., and Jyomura, S., J. Appl. Phys. 52, 4479 (1981).CrossRefGoogle Scholar
30.Berger, G., Cadore, E., Schott, J., and Dove, P., Geochim. Cosmochim. Acta 58, 541 (1994).CrossRefGoogle Scholar
31.Jang, H. and Furstenau, D., Colloids Surf. 21, 235 (1986).CrossRefGoogle Scholar
32.Heywood, B. and Mann, S., Adv. Mater. 6, 9 (1994).CrossRefGoogle Scholar
33.Addadi, L., Berkovitch-Wellin, Z., Weissbuch, I., van Mil, J., Shimon, L., Lahav, M., and Leiserowitz, L., Angew. Chem. Int. Ed. Eng. 24, 466 (1985).CrossRefGoogle Scholar
34.Xia, C., Shi, E., Zhong, W., and Guo, J., J. Crystal Growth 166, 961 (1996).CrossRefGoogle Scholar
35.Yoshimoto, M., Maeda, T., Ohnishi, T., Koinuma, H., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R., and Miyamoto, A., Appl. Phys. Lett. 18, 2615 (1995).CrossRefGoogle Scholar
36.Yoshimoto, M., Maeda, T., Ohnishi, T., Koinuma, H., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R., and Miyamoto, A., Appl. Phys. Lett. 18, 2615 (1995).CrossRefGoogle Scholar
37.Jiang, Q. and Zegenhagen, J., in Epitaxial Oxide Thin Films III, edited by Schlom, D., Eom, C., Hawley, M., Foster, C., and Speck, J. (Mater. Res. Soc. Symp. Proc. 474, Pittsburgh, PA, 1997), p. 373.Google Scholar
38.Kawasaki, M., Takahashi, S., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, Y., Yoshimoto, M., and Koinuma, H., Science 266, 1540 (1994).CrossRefGoogle Scholar