Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T14:00:01.008Z Has data issue: false hasContentIssue false

Synthesis and characterization of Nb, F-codoped titania nanoparticles for dye-sensitized solar cells

Published online by Cambridge University Press:  23 January 2014

Mingqi Gao
Affiliation:
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China
Youlong Xu*
Affiliation:
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China
Yang Bai
Affiliation:
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China
Shaohua Jin
Affiliation:
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nb, F-codoped TiO2 (NFT) nanoparticles are prepared via hydrothermal processes using Nb2O5 and hydrofluoric acid as doping source. Nb and F distribute homogeneously in the NFT nanoparticles as shown in scanning transmission electron microscopy elemental mappings. The codoping of Nb and F improves the crystallinity of TiO2 significantly and increases the Ti3+ concentration, which results in the enhancement of electron injection and in the increase of the charge-transfer ability in dye-sensitized solar cells. The relative energy conversion efficiency can be 66.1% higher than that of the cell, based on pure TiO2, when the Nb:F:Ti molar ratio is about 0.03:0.15:0.97.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Oregan, B. and Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).CrossRefGoogle Scholar
Yang, M., Kim, D., Jha, H., Lee, K., Paul, J., and Schmuki, P.: Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chem. Commun. 47, 2032 (2011).CrossRefGoogle ScholarPubMed
Fernandez-Garcia, M., Martinez-Arias, A., Hanson, J.C., and Rodriguez, J.A.: Nanostructured oxides in chemistry: Characterization and properties. Chem. Rev. 104, 4063 (2004).CrossRefGoogle Scholar
Li, D.D., Chang, P.C., Chien, C.J., and Lu, J.G.: Applications of tunable TiO2 nanotubes as nanotemplate and photovoltaic device. Chem. Mater. 22, 5707 (2010).CrossRefGoogle Scholar
Zhong, X.M., Yu, D.L., Zhang, S.Y., Chen, X., Song, Y., Li, D.D., and Zhu, X.F.: Fabrication and formation mechanism of triple-layered TiO2 nanotubes. J. Electrochem. Soc. 160, E125 (2013).CrossRefGoogle Scholar
Shang, S.G., Xu, K.W., Gao, M.Q., Zhao, L., and Chen, H.F.: Fabrication and properties of dye-sensitized solar cells with screen-printed bilayer composite film photoactive electrode. Integr. Ferroelectr. 138, 137 (2012).CrossRefGoogle Scholar
Lu, X.J., Mou, X.L., Wu, J.J., Zhang, D.W., Zhang, L.L., Huang, F.Q., Xu, F.F., and Huang, S.M.: Improved-performance dye-sensitized solar cells using Nb-doped TiO2 electrodes: Efficient electron injection and transfer. Adv. Funct. Mater. 20, 509 (2010).CrossRefGoogle Scholar
Kubacka, A., Colon, G., and Fernandez-Garcia, M.: Cationic (V, Mo, Nb, W) doping of TiO2-anatase: A real alternative for visible light-driven photocatalysts. Catal. Today 143, 286 (2009).CrossRefGoogle Scholar
Devi, L.G., Murthy, B.N., and Kumar, S.G.: Photocatalytic activity of TiO2 doped with Zn2+ and V5+ transition metal ions: Influence of crystallite size and dopant electronic configuration on photocatalytic activity. Mater. Sci. Eng., B 166, 1 (2010).CrossRefGoogle Scholar
Sun, D.G., Du, J., Liu, Z.H., Tao, C.Y., and Zhai, J.: Preparation and characterization of N, S, F-codoped nanosize TiO2 with ionic liquid. Spectrosc. Spec. Anal. 31, 525 (2011).Google Scholar
Di Valentin, C., Pacchioni, G., and Selloni, A.: Reduced and n-type doped TiO2: Nature of Ti3+ species. J. Phys. Chem. C 113, 20543 (2009).CrossRefGoogle Scholar
Liu, Y.J., Szeifert, J.M., Feckl, J.M., Mandlmeier, B., Rathousky, J., Hayden, O., Fattakhova-Rohlfing, D., and Bein, T.: Niobium-doped titania nanoparticles: Synthesis and assembly into mesoporous films and electrical conductivity. ACS Nano 4, 5373 (2010).CrossRefGoogle ScholarPubMed
Lee, S., Noh, J.H., Han, H.S., Yim, D.K., Kim, D.H., Lee, J.K., Kim, J.Y., Jung, H.S., and Hong, K.S.: Nb-doped TiO2: A new compact layer material for TiO2 dye-sensitized solar cells. J. Phys. Chem. C 113, 6878 (2009).CrossRefGoogle Scholar
Noh, J.H., Lee, S., Kim, J.Y., Lee, J.K., Han, H.S., Cho, C.M., Cho, I.S., Jung, H.S., and Hong, K.S.: Functional multilayered transparent conducting oxide thin films for photovoltaic devices. J. Phys. Chem. C 113, 1083 (2009).CrossRefGoogle Scholar
Siddiki, M.K., Munoz-Rojas, D., Oro, J., Li, J.J., Qiao, Q., Galipeau, D.W., and Lira-Cantu, M.: Synthesis and characterization of Nb doped titania for dye sensitized solar cells. 34th Ieee Photovoltaic Specialists Conference, Philadelphia, PA, vol. 13, p. 832 (2009).Google Scholar
Ruiz, A.M., Dezanneau, G., Arbiol, J., Cornet, A., and Morante, J.R.: Insights into the structural and chemical modifications of Nb additive on TiO2 nanoparticles. Chem. Mater. 16, 862 (2004).CrossRefGoogle Scholar
Lv, K., Yu, J., Cui, L., Chen, S., and Li, M.: Preparation of thermally stable anatase TiO2 photocatalyst from TiOF2 precursor and its photocatalytic activity. J. Alloys Compd. 509, 4557 (2011).CrossRefGoogle Scholar
Yu, J.C., Yu, J.G., Ho, W.K., Jiang, Z.T., and Zhang, L.Z.: Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808 (2002).CrossRefGoogle Scholar
Xie, Y., Huang, N., You, S., Liu, Y., Sebo, B., Liang, L., Fang, X., Liu, W., Guo, S., and Zhao, X-Z.: Improved performance of dye-sensitized solar cells by trace amount Cr-doped TiO2 photoelectrodes. J. Power Sources 224, 168 (2013).CrossRefGoogle Scholar
Sakai, Y.W., Obata, K., Hashimoto, K., and Irie, H.: Enhancement of visible light-induced hydrophilicity on nitrogen and sulfur-codoped TiO2 thin films. Vacuum 83, 683 (2008).CrossRefGoogle Scholar
Li, F., Yin, X.L., Yao, M.M., and Li, J.: Investigation on F-B-S tri-doped nano-TiO2 films for the photocatalytic degradation of organic dyes. J. Nanopart. Res. 13, 4839 (2011).CrossRefGoogle Scholar
Breault, T.M. and Bartlett, B.M.: Lowering the band gap of anatase-structured TiO2 by coalloying with Nb and N: Electronic structure and photocatalytic degradation of methylene blue dye. J. Phys. Chem. C 116, 5986 (2012).CrossRefGoogle Scholar
Yu, C.L., Shu, Q., Zhang, C.X., Xie, Z.P., and Fan, Q.Z.: A sonochemical route to fabricate the novel porous F, Ce-codoped TiO2 photocatalyst with efficient photocatalytic performance. J. Porous Mater. 19, 903 (2012).CrossRefGoogle Scholar
Yu, C., Yu, J.C., and Chan, M.: Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres. J. Solid State Chem. 182, 1061 (2009).CrossRefGoogle Scholar
Gao, M.Q., Xu, Y.L., and Bai, Y.: Nb, F-didoped titanium micro-beads used in dye sensitized solar cells. J. Xi'an Jiaotong Univ. 45, 87 (2011).Google Scholar
Yu, J.G., Zhao, X.J., and Zhao, Q.N.: Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method. Thin Solid Films 379, 7 (2000).CrossRefGoogle Scholar
Shannon, R.D. and Prewitt, C.T.: Revised values of effective ionic radii. Acta Crystallogr., Sect. B: Struct. Sci. 26, 1046 (1970).CrossRefGoogle Scholar
Shannon, R.D.: Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751 (1976).CrossRefGoogle Scholar
Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., and Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008).CrossRefGoogle ScholarPubMed
Werfel, F. and Bruemmer, O.: Corundum structure oxides studied by XPS. Phys. Scr. 28, 92 (1983).CrossRefGoogle Scholar
Wangner, C.D., Riggs, W.M., Davis, L.E., and Moulder, J.F.: Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prairie, 1979), p. 346.Google Scholar
Wagner, C.D., Zatko, D.A., and Raymond, R.H.: Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis. Anal. Chem. 52, 1445 (1980).CrossRefGoogle Scholar
Slink, W.E. and DeGroot, P.B.: Vanadium-titanium oxide catalysts for oxidation of butene to acetic acid. J. Catal. 68, 423 (1981).CrossRefGoogle Scholar
Gonbeau, D., Guimon, C., Pfister-Guillouzo, G., Levasseur, A., Meunier, G., and Dormoy, R.: XPS study of thin films of titanium oxysulfides. Surf. Sci. 254, 81 (1991).CrossRefGoogle Scholar
Ingo, G.M., Dire, S., and Babonneau, F.: XPS studies of SiO2-TiO2 powders prepared by sol-gel process. Appl. Surf. Sci. 7071, 230 (1993).CrossRefGoogle Scholar
Wojcieszak, R., Jasik, A., Monteverdi, S., Ziolek, M., and Bettahar, M.M.: Nickel niobia interaction in non-classical Ni/Nb2O5 catalysts. J. Mol. Catal. A: Chem. 256, 225 (2006).CrossRefGoogle Scholar
Samadpour, M., Boix, P.P., Gimenez, S., Zad, A.I., Taghavinia, N., Mora-Sero, I., and Bisquert, J.: Fluorine treatment of TiO2 for enhancing quantum dot sensitized solar cell performance. J. Phys. Chem. C 115, 14400 (2011).CrossRefGoogle Scholar
Hitosugi, T., Kamisaka, H., Yamashita, K., Nogawa, H., Furubayashi, Y., Nakao, S., Yamada, N., Chikamatsu, A., Kumigashira, H., Oshima, M., Hirose, Y., Shimada, T., and Hasegawa, T.: Electronic band structure of transparent conductor: Nb-doped anatase TiO2. Appl. Phys. Express 1, 111203 (2008).CrossRefGoogle Scholar
Zhang, R-S., Liu, Y., Gao, Q., Teng, F., Song, C-L., Wang, W., and Han, G-R.: First-principles study on the electronic and optical properties of F- and Nb-doped anatase TiO2. J. Alloys Compd. 509, 9178 (2011).CrossRefGoogle Scholar
Im, J.S., Yun, J., Lee, S.K., and Lee, Y-S.: Effects of multi-element dopants of TiO2 for high performance in dye-sensitized solar cells. J. Alloys Compd. 513, 573 (2012).Google Scholar
Im, J.S., Jung, M.J., and Lee, Y-S.: Effects of fluorination modification on pore size controlled electrospun activated carbon fibers for high capacity methane storage. J. Colloid Interface Sci. 339, 31 (2009).CrossRefGoogle ScholarPubMed
Im, J.S., Yun, S-M., and Lee, Y-S.: Investigation of multielemental catalysts based on decreasing the band gap of titania for enhanced visible light photocatalysis. J. Colloid Interface Sci. 336, 183 (2009).CrossRefGoogle ScholarPubMed
Wang, Z-S., Yamaguchi, T., Sugihara, H., and Arakawa, H.: Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films. Langmuir 21, 4272 (2005).CrossRefGoogle ScholarPubMed
Snaith, H.J. and Schmidt-Mende, L.: Advances in liquid-electrolyte and solid-state dye-sensitized solar cells. Adv. Mater. 19, 3187 (2007).CrossRefGoogle Scholar
Han, L.Y., Koide, N., Chiba, Y., and Mitate, T.: Modeling of an equivalent circuit for dye-sensitized solar cells. Appl. Phys. Lett. 84, 2433 (2004).CrossRefGoogle Scholar
Koide, N., Islam, A., Chiba, Y., and Han, L.: Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit. J. Photochem. Photobiol., A 182, 296 (2006).CrossRefGoogle Scholar
Hsiao, P-T., Tung, Y-L., and Teng, H.: Electron transport patterns in TiO2 nanocrystalline films of dye-sensitized solar cells. J. Phys. Chem. C 114, 6762 (2010).CrossRefGoogle Scholar
Wang, M., Chen, P., Humphry-Baker, R., Zakeeruddin, S.M., and Gratzel, M.: The influence of charge transport and recombination on the performance of dye-sensitized solar cells. Chemphyschem 10, 290 (2009).CrossRefGoogle ScholarPubMed