Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-07T19:00:26.819Z Has data issue: false hasContentIssue false

Synthesis and characterization of nanometer-sized Ti-based amorphous powders

Published online by Cambridge University Press:  31 January 2011

J. Jayaraj
Affiliation:
Center for Advanced Functional Metals, Korea Institute of Science & Technology, Cheongryang, Seoul 130-650, Korea
E. Fleury*
Affiliation:
Center for Advanced Functional Metals, Korea Institute of Science & Technology, Cheongryang, Seoul 130-650, Korea
B.J. Park
Affiliation:
Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea
D.H. Kim
Affiliation:
Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Korea
W.T. Kim
Affiliation:
Division of Applied Science, Cheongju University, Cheongju, 360-764, Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We present a simple method for preparing nanometer-sized, Ti-based amorphous powders from the Y28Ti28Al24Co20and Y36Ti20Al24Co20two-phase amorphous alloys. The initial microstructure of these rapidly quenched alloys is composed of Ti-based, amorphous, spherical, nanometer-sized particles embedded in a Y-based amorphous matrix, with particle size dependent on the alloy composition. The Ti-based powders were extracted from the two-phase amorphous alloys through selective dissolution of the Y-rich matrix in a 0.1 M HNO3solution. The powders of size ranging between 20 and 200 nm have smooth and spherical morphology, and exhibit different magnetic behavior than the bulk alloy of identical composition.

Type
Articles
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nalwa, H.S.: Handbook of Nanostructured Materials and Nanotechnology, Synthesis and Processing(Vol. 1) (Academic Press San Diego, CA 2000Google Scholar
2Matsui, J., Akamatsu, K., Nishiguchi, S., Miyoshi, D., Nawafune, H., Tamaki, K.Sugimoto, N.: Composite of Au nanopartcles and molecularly imprinted polymer as a sensing material. Anal. Chem. 76, 1310 2004Google Scholar
3Toshima, N.Yonezawa, T.: Bimetallic nanoparticles-novel materials for chemical and physical applications. New J. Chem. 22, 1179 1998CrossRefGoogle Scholar
4Schmid, G., Liu, Y.P., Schumann, M., Raschke, T.Radehaus, C.: Quasi one-dimensional arrangements of Au55(PPh3)12Cl6clusters and their electrical properties at room tempreature. Nano Lett. 1, 405 2001CrossRefGoogle Scholar
5Nam, J.M., Park, S.J.Mirkin, C.A.: Bio-barcodes based on oligonucleotide-modified nanoparticles. J. Am. Chem. Soc. 124, 3820 2002Google Scholar
6Molnar, A., Bertoti, I., Szepvolgyi, J., Mulas, G.Cocco, G.: Surface characterization of Cu-M (M = Ti, Zr, or Hf) alloy powder catalysts. J. Phys. Chem. B 102, 9258 1998CrossRefGoogle Scholar
7van Wonterghem, J., Mørup, S., Koch, C.J.W., Charles, S.W.Wells, S.: Formation of ultra-fine amorphous alloy particles by reduction in aqueous solution. Nature 322, 622 1986CrossRefGoogle Scholar
8Tsushio, Y., Enoki, H.Akiba, E.: Hydrogenation properties of MgNi0.86M10.03(M1 = Cr, Fe, Co, Mn) alloys. J. Alloys Compd. 281, 301 1998CrossRefGoogle Scholar
9Kundig, A.A., Ohnuma, M., Ping, D.H., Ohkubo, T.Hono, K.: In situ formed two-phase metallic glass with surface fractal microstructure. Acta Mater. 52, 2441 2004Google Scholar
10Park, B.J., Chang, H.J., Kim, D.H., Kim, W.T., Chattopadhyay, K., Abinandanan, T.A.Bhattacharya, S.: Phase seperating bulk metallic glass: A hierarchical composites. Phys. Rev. Lett. 96, 245503 2006Google Scholar
11Mattern, N., Kuhn, U., Gebert, A., Gemming, T., Zinkevich, M., Wendrock, H.Schultz, L.: Microstructure and thermal behavior of two-phase amorphous Ni–Nb–Y alloy. Scripta Mater. 53, 271 2005CrossRefGoogle Scholar
12Gebert, A., Kundig, A.A., Schultz, L.Hono, K.: Selective electrochemical dissolution in two-phase La–Zr–Al–Cu–Ni metallic glass. Scripta Mater. 51, 961 2004Google Scholar
13Jayaraj, J., Park, B.J., Kim, D.H., Kim, W.T.Fleury, E.: Nanometer-sized porous Ti-based metallic glass. Scripta Mater. 55, 1063 2006CrossRefGoogle Scholar
14Park, B.J., Chang, H.J., Kim, D.H.Kim, W.T.: In situ formation of two amorphous phases by liquid phase separation in Y–Ti–Al–Co alloy. Appl. Phys. Lett. 85, 6353 2004CrossRefGoogle Scholar
15Guo, F., Poon, S.J.Shiflet, G.J.: Metallic glass ingots based on yttrium. Appl. Phys. Lett. 83, 2575 2003CrossRefGoogle Scholar
16Pourbaix, M.: Atlas of Electrochemical Equilibria in Aqueous Solutions Pergamon Press Oxford 1996Google Scholar
17Mukherji, D., Pigozzi, G., Schmitz, F., Näth, O., Rösler, J.Kostorz, G.: Nano-structured materials produced from simple metallic alloys by phase separation. Nanotechnology 16, 2176 2005Google Scholar
18Brett, C.M.A.Brett, A.M.O.: Electrochemistry: Principles, Methods and Application Oxford University Press Oxford, UK 1998Google Scholar
19Shiba, K., Tsunashima, S., Uchiyama, S.Yoshino, S.: Magnetic and galvanometric properties of amorphous Co-metal films. IEEE Trans. Magn. 22, 1104 1986Google Scholar
20Miracle, D.B.: The efficient cluster packing model: An atomic structural model for metallic glasses. Acta Mater. 54, 4317 2006Google Scholar