Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T11:41:15.078Z Has data issue: false hasContentIssue false

Synthesis and blood compatibilities of novel segmented polyurethanes containing phosphatidylcholine analogous moieties in the main chains and long-chain alkyl groups in the side chains

Published online by Cambridge University Press:  31 January 2011

Arata Korematsu
Affiliation:
Department of Bioapplied Chemistry, Faculty of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
Yu-Jun Li
Affiliation:
Department of Bioapplied Chemistry, Faculty of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
Takayuki Murakami
Affiliation:
Department of Bioapplied Chemistry, Faculty of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
Tadao Nakaya
Affiliation:
Department of Bioapplied Chemistry, Faculty of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
Get access

Abstract

New segmented polyurethanes containing phospholipid moieties in the main chains and long-chain alkyl groups in the side chains were synthesized. The soft segments used in this study were poly(butadiene), poly(isoprene), hydrogenated poly(isoprene), and poly(1,6-hexyl-1,2-ethylcarbonate) diol. The hard segments of these polyurethanes were 4,4′-methylenediphenyl diisocyanate, bis[2-(2-hydroxyethyldimethylammonio)ethyl]2-cetyl- 1,3-propanediphosphate, and 1,4-butanediol. The blood compatibilities of the new polymers were evaluated by platelet-rich plasma contact studies and viewed by scanning electron microscopy using medical grade BioSpan® and nonphospholipid polyurethane as references. These new materials have good surfaces in terms of platelet adhesion, and the morphology of adhered platelets undergoes a relatively low degree of variation.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hara, K., Seirikasseishishitsu no Seikagaku to Ouyou (in Japanese, Saiwai Shobo, Tokyo, 1993), p. 112.Google Scholar
2.Durrani, A.A., Hayward, J.A., and Chapman, D., Biomaterials 7, 121 (1986).CrossRefGoogle Scholar
3.Li, Y-J., Matthews, K.H., Kodama, M., and Nakaya, T., Macromol. Chem. Phys. 196, 3143 (1995).CrossRefGoogle Scholar
4.Ishihara, K., Ziats, N.P., Tierney, B.P., Nakabayashi, N., and Anderson, J.M., J. Biomed. Mater. Res. 25, 1397 (1991).CrossRefGoogle Scholar
5.Nakaya, T., Yamada, M., and Imoto, M., Japan Patent No. 61–207395 (1986); Chem. Abstr. 106, 177059 (1987).Google Scholar
6.Nakaya, T. and Nakai, S., Kagaku (in Japanese) 42, 725 (1987).Google Scholar
7.Yamada, M., Li, Y-J., and Nakaya, T., Macromol. Rapid Commun. 16, 25 (1995).CrossRefGoogle Scholar
8.Li, Y-J., Nakamura, N., Chen, T.M., Wang, Y-F., Kitamura, M., and Nakaya, T., Macromol. Rapid Commun. 17, 737 (1996).CrossRefGoogle Scholar
9.Korematsu, A., Li, Y-J., and Nakaya, T., Polym. Bull. 38, 133 (1997).CrossRefGoogle Scholar
10.Li, Y-J., Nakamura, N., Wang, Y-F., Kodama, M., and Nakaya, T., Chem. Mater. 9, 1570 (1997).CrossRefGoogle Scholar
11.Li, Y-J., Nakaya, T., Zhang, Z., and Kodama, M., J. Biomater. Appl. 12, 167 (1997).Google Scholar
12.Korematsu, A., Li, Y-J., Murakami, T., Sakurai, I., Kodama, M., and Nakaya, T., J. Mater. Chem. 9, 647 (1999).CrossRefGoogle Scholar
13.Boretos, J.W. and Pierce, W.S., Science 158, 1481 (1967).CrossRefGoogle Scholar
14.Boretos, J.W., J. Biomed. Mater. Res. 6, 473 (1972).Google Scholar
15.Boretos, J.W., in Proc. 8th Annual Society of Biomaterials (Wiley, Chichester, 1982), p. 24.Google Scholar
16.Coury, A.J., Stokes, K.B., Cahalan, P.T., and Slaikeu, P.C., Life Support Systems 5, 25 (1987).Google Scholar
17.Coury, A.J., Slaikeu, P.C., Cahalan, P.T., Stokes, K.B., and Hobot, C.M., J. Biomater. Appl. 3, 130 (1988).CrossRefGoogle Scholar
18.Takahara, A., Takamori, K., and Kajiyama, T., Artificial Heart 2, edited by Akutsu, T. (Springer-Verlag, Tokyo, 1988), p. 19.CrossRefGoogle Scholar
19.Takahara, A., Okkema, A.Z., Cooper, S.L., and Coury, A.J., Biomaterials 12, 324 (1991).CrossRefGoogle Scholar
20.Tsuchiya, T., Takahara, A., Cooper, S.L., and Nakamura, A., J. Biomed. Mater. Res. 29, 835 (1995).CrossRefGoogle Scholar
21.Nakata, M., Kobunshi (High Polymers, Japan), 46, 558 (1997).Google Scholar
22.Saunders, J.H. and Frisch, K.C., Polyurethane Chemistry and Technology: Part 1: Chemistry (Interscience, New York, 1962).Google Scholar
23.Li, Y-J. and Nakaya, T., Macromol. Symp. 122, 363 (1997).CrossRefGoogle Scholar
24.Sakurai, I., Kawamura, Y., Suetsugu, T., and Nakaya, T., Macromolecules 25, 7256 (1992).CrossRefGoogle Scholar
25.Li, Y-J., Matthews, K.H., Chen, T-M., Wang, Y-F., Kodama, M., and Nakaya, T., Chem. Mater. 8, 1441 (1996).Google Scholar
26.Li, Y-J., Matthews, K.H., Wang, Y-F., Chen, T-M., Kodama, M., and Nakaya, T., J. Appl. Polym. Sci. 62, 687 (1996).Google Scholar
27.Ward, R.S. and White, K.A., in Proceedings of Topical Symposium VIII, Materials in Clinical Applications of the 8th CIMTEC—Forum on New Materials (Florence, Italy, 1994).Google Scholar
28.Li, Y-J., Yokawa, T., Matthews, K.H., Chen, T-M., Wang, Y-F., Kodama, M., and Nakaya, T., Biomaterials 17, 2179 (1996).CrossRefGoogle Scholar
29.Paik Sung, C.S. and Hu, C.B., J. Biomed. Mater. Res. 13, 161 (1979).CrossRefGoogle Scholar
30.Li, Y-J., Tomita, T., Tanda, K., and Nakaya, T., Chem. Mater. 10, 1596 (1998).CrossRefGoogle Scholar
31.Ishihara, K. and Nakabayashi, N., Hyomen (in Japanese) 28, 720 (1990).Google Scholar
32.Nakabayashi, N. and Ishihara, K., Macromol. Symp. 101, 405 (1996).CrossRefGoogle Scholar