Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-30T19:32:54.943Z Has data issue: false hasContentIssue false

Synchronous chemical vapor deposition of large-area hybrid graphene–carbon nanotube architectures

Published online by Cambridge University Press:  07 February 2013

Maziar Ghazinejad*
Affiliation:
Department of Mechanical Engineering, University of California, Riverside, California 92521; and Department of Electrical Engineering, University of California, Riverside, California 92521
Shirui Guo*
Affiliation:
Department of Chemistry, University of California, Riverside, California 92521
Wei Wang
Affiliation:
Department of Materials Science and Engineering Program, University of California, Riverside, California 92521
Mihrimah Ozkan
Affiliation:
Department of Electrical Engineering, University of California, Riverside, California 92521
Cengiz S. Ozkan*
Affiliation:
Department of Mechanical Engineering, University of California, Riverside, California 92521; and Department of Materials Science and Engineering Program, University of California, Riverside, California 92521
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report on the successful synthesis of a graphene–carbon nanotube (CNT) hybrid architecture by a parallel chemical vapor deposition (CVD) of the two carbon allotropes. The carbon hybrid is a three-dimensional (3D) nanostructure with tuneable architecture comprising vertically grown CNTs as pillars and a large-area graphene plane as the floor. The formation of CNTs and graphene occurs simultaneously in a single CVD growth that we describe as a synchronous synthesis method. Unique nature of the fabrication approach contributes significantly to the quality and composure of final nanohybrid. Detailed characterization elucidates the cohesive structure and robust contact between the graphene floor and the CNTs in the hybrid structure. The functionality of the synthesized graphene hybrid structure has been demonstrated by its incorporation into a supercapacitor cell. Our fabrication approach provides an attractive pathway for the fabrication of novel 3D hybrid nanostructures and efficient device integration.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197200 (2005).CrossRefGoogle ScholarPubMed
2.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666669 (2004).CrossRefGoogle ScholarPubMed
3.Zhang, Y., Tan, Y-W., Stormer, H.L., and Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201204 (2005).CrossRefGoogle ScholarPubMed
4.Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183191 (2007).CrossRefGoogle ScholarPubMed
5.Chen, J-H., Jang, C., Xiao, S., Ishigami, M., and Fuhrer, M.S.: Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206209 (2008).CrossRefGoogle ScholarPubMed
6.Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902907 (2008).CrossRefGoogle ScholarPubMed
7.Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385388 (2008).CrossRefGoogle ScholarPubMed
8.Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., and Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652655 (2007).CrossRefGoogle ScholarPubMed
9.Wang, X., Zhi, L., and Mullen, K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323327 (2007).CrossRefGoogle ScholarPubMed
10.Yan, J., Wei, T., Shao, B., Fan, Z., Qian, W., Zhang, M., and Wei, F.: Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48, 487493 (2009).CrossRefGoogle Scholar
11.Lin, J., Teweldebrhan, D., Ashraf, K., Liu, G., Jing, X., Yan, Z., Li, R., Ozkan, M., Lake, R.K., Balandin, A.A., and Ozkan, C.S.: Gating of single-layer graphene with single-stranded deoxyribonucleic acids. Small 6, 11501155 (2010).CrossRefGoogle ScholarPubMed
12.Yoo, E., Kim, J., Hosono, E., Zhou, H-S., Kudo, T., and Honma, I.: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 22772282 (2008).CrossRefGoogle ScholarPubMed
13.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 5658 (1991).CrossRefGoogle Scholar
14.Dresselhaus, M.S., Dresselhaus, G., and Jorio, A.: Unusual properties and structure of carbon nanotubes. Annu. Rev. Mater. 34, 247278 (2004).CrossRefGoogle Scholar
15.Popov, V.N.: Carbon nanotubes: Properties and application. Mater. Sci. Eng., R 43, 42 (2004).CrossRefGoogle Scholar
16.Collins, P.G., Arnold, M.S., and Avouris, P.: Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706709 (2001).CrossRefGoogle ScholarPubMed
17.Javey, A., Guo, J., Wang, Q., Lundstrom, M., and Dai, H.: Ballistic carbon nanotube field-effect transistors. Nature 424, 654657 (2003).CrossRefGoogle ScholarPubMed
18.de Heer, W.A., Chatelain, A., and Ugarte, D.: A carbon nanotube field-emission electron source. Science 270, 11791180 (1995).CrossRefGoogle Scholar
19.Lee, D.H., Kim, J.E., Han, T.H., Hwang, J.W., Jeon, S., Choi, S-Y., Hong, S.H., Lee, W.J., Ruoff, R.S., and Kim, S.O.: Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films. Adv. Mater. 22, 12471252 (2010).CrossRefGoogle ScholarPubMed
20.Jeong, H.Y., Lee, D-S., Choi, H.K., Lee, D.H., Kim, J-E., Lee, J.Y., Lee, W.J., Kim, S.O., and Choi, S-Y.: Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl. Phys. Lett. 96, 213105–213105-3 (2010).CrossRefGoogle Scholar
21.Yu, D. and Dai, L.: Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1, 467470 (2009).CrossRefGoogle Scholar
22.Tung, V.C., Chen, L-M., Allen, M.J., Wassei, J.K., Nelson, K., Kaner, R.B., and Yang, Y.: Low-temperature solution processing of graphene carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 9, 19491955 (2009).CrossRefGoogle ScholarPubMed
23.Dimitrakakis, G.K., Tylianakis, E., and Froudakis, G.E.: Pillared graphene: A new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 8, 31663170 (2008).CrossRefGoogle ScholarPubMed
24.Stoller, M.D., Park, S., Zhu, Y., An, J., and Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 34983502 (2008).CrossRefGoogle ScholarPubMed
25.Lee, D.H., Lee, J.A., Lee, W.J., Choi, D.S., Lee, W.J., and Kim, S.O.: Facile fabrication and field emission of metal-particle-decorated vertical N-doped carbon nanotube/graphene hybrid films. J. Phys. Chem. C 114, 2118421189 (2010).CrossRefGoogle Scholar
26.Lee, D.H., Lee, J.A., Lee, W.J., and Kim, S.O.: Flexible field emission of nitrogen-doped carbon nanotubes/reduced graphene hybrid films. Small 7, 95100 (2011).CrossRefGoogle ScholarPubMed
27.Gomez-Navarro, C., Meyer, J.C., Sundaram, R.S., Chuvilin, A., Kurasch, S., Burghard, M., Kern, K., and Kaiser, U.: Atomic structure of reduced graphene oxide. Nano Lett. 10, 11441148 (2010).CrossRefGoogle ScholarPubMed
28.Blake, P., Brimicombe, P.D., Nair, R.R., Booth, T.J., Jiang, D., Schedin, F., Ponomarenko, L.A., Morozov, S.V., Gleeson, H.F., Hill, E.W., Geim, A.K., and Novoselov, K.S.: Graphene-based liquid crystal device. Nano Lett. 8, 17041708 (2008).CrossRefGoogle ScholarPubMed
29.Ponomarenko, L.A., Schedin, F., Katsnelson, M.I., Yang, R., Hill, E.W., Novoselov, K.S., and Geim, A.K.: Chaotic Dirac billiard in graphene quantum dots. Science 320, 356358 (2008).CrossRefGoogle ScholarPubMed
30.Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., and Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 3035 (2008).CrossRefGoogle Scholar
31.Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J-H., Kim, P., Choi, J-Y., and Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706710 (2009).CrossRefGoogle ScholarPubMed
32.Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., and Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 13121314 (2009).CrossRefGoogle ScholarPubMed
33.Levendorf, M.P., Ruiz-Vargas, C.S., Garg, S., and Park, J.: Transfer-free batch fabrication of single layer graphene transistors. Nano Lett. 9, 44794483 (2009).CrossRefGoogle ScholarPubMed
34.Dong, X., Li, B., Wei, A., Cao, X., Chan-Park, M.B., Zhang, H., Li, L-J., Huang, W., and Chen, P.: One-step growth of graphene–carbon nanotube hybrid materials by chemical vapor deposition. Carbon 49, 29442949 (2011).CrossRefGoogle Scholar
35.Fan, Z., Yan, J., Zhi, L., Zhang, Q., Wei, T., Feng, J., Zhang, M., Qian, W., and Wei, F.: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 37233728 (2010).CrossRefGoogle ScholarPubMed
36.Paul, R.K., Ghazinejad, M., Penchev, M., Lin, J., Ozkan, M., and Ozkan, C.S.: Synthesis of a pillared graphene nanostructure: A counterpart of three-dimensional carbon architectures. Small 6, 23092313 (2010).CrossRefGoogle ScholarPubMed
37.Lin, J., Zhong, J., Bao, D., Reiber-Kyle, J., and Wang, W.: Supercapacitors based on pillared graphene nanostructures. J. Nanosci. Nanotechnol. 12, 17701775 (2012).CrossRefGoogle ScholarPubMed
38.Lahiri, I., Seelaboyina, R., Hwang, J.Y., Banerjee, R., and Choi, W.: Enhanced field emission from multi-walled carbon nanotubes grown on pure copper substrate. Carbon 48, 15311538 (2010).CrossRefGoogle Scholar
39.Li, G., Chakrabarti, S., Schulz, M., and Shanov, V.: Growth of aligned multiwalled carbon nanotubes on bulk copper substrates by chemical vapor deposition. J. Mater. Res. 24, 28132820 (2009).CrossRefGoogle Scholar
40.Wang, H., Feng, J., Hu, X., and Ng, K.M.: Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor deposition. J. Phys. Chem. C 111, 1261712624 (2007).CrossRefGoogle Scholar
41.Delzeit, L., Nguyen, C.V., Chen, B., Stevens, R., Cassell, A., Han, J., and Meyyappan, M.: Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts. J. Phys. Chem. B 106, 56295635 (2002).CrossRefGoogle Scholar
42.Perrot, P., Arnout, S., and Vrestal, J.: Copper – iron – oxygen; ternary alloy systems, in Landolt-börnstein database 11D3. Iron systems, Part 3, (Springer Materials, 2008), pp. 509539.Google Scholar
43.Askeland, D.R. and Phule, P.P.: The Science and Engineering of Materials (Thomson Learning, Independence, KY, 2005).Google Scholar
44.De Yoreo, J.J. and Vekilov, P.G.: Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 54, 5793 (2003).CrossRefGoogle Scholar
45.Wang, Z.L., Liu, Y., and Kluwer, Z.Z.: Handbook of Nanophase and Nanostructured Materials (Academic/Plenum Publishers, New York, NY, 2002).CrossRefGoogle Scholar
46.Wang, C.P., Liu, X.J., Jiang, M., Ohnuma, I., Kainuma, R., and Ishida, K.: Thermodynamic database of the phase diagrams in copper base alloy systems. J. Phys. Chem. Solids 66, 256260 (2005).CrossRefGoogle Scholar
47.Haluska, M., Hirscher, M., Becher, M., Dettlaff-Weglikowska, U., Chen, X., and Roth, S.: Interaction of hydrogen isotopes with carbon nanostructures. Mater. Sci. Eng., B 108, 130133 (2004).CrossRefGoogle Scholar
48.Park, H.J., Meyer, J., Roth, S., and Skákalová, V.: Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48, 10881094 (2010).CrossRefGoogle Scholar
49.Baker, R.T.K.: Catalytic growth of carbon filaments. Carbon 27, 315323 (1989).CrossRefGoogle Scholar
50.Cassell, A.M., Raymakers, J.A., Kong, J., and Dai, H.: Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103, 64846492 (1999).CrossRefGoogle Scholar
51.Sveningsson, M., Morjan, R.E., Nerushev, O.A., Sato, Y., Bäckström, J., Campbell, E.E.B., and Rohmund, F.: Raman spectroscopy and field-emission properties of CVD-grown carbon-nanotube films. Appl. Phys. A 73, 409418 (2001).CrossRefGoogle Scholar
52.Li, Y., Zhang, X.B., Tao, X.Y., Xu, J.M., Huang, W.Z., Luo, J.H., Luo, Z.Q., Li, T., Liu, F., Bao, Y., and Geise, H.J.: Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst. Carbon 43, 295301 (2005).CrossRefGoogle Scholar
53.Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., and Roth, S.: The structure of suspended graphene sheets. Nature 446, 6063 (2007).CrossRefGoogle ScholarPubMed
54.Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Obergfell, D., Roth, S., Girit, C., and Zettl, A.: On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143, 101109 (2007).CrossRefGoogle Scholar
55.Futaba, D.N., Hata, K., Yamada, T., Hiraoka, T., Hayamizu, Y., Kakudate, Y., Tanaike, O., Hatori, H., Yumura, M., and Iijima, S.: Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987994 (2006).CrossRefGoogle ScholarPubMed
56.Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., and Ruoff, R.S.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 15371541 (2011).CrossRefGoogle ScholarPubMed
57.Yu, A., Roes, I., Davies, A., and Chen, Z.: Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl. Phys. Lett. 96, 253105 (2010).CrossRefGoogle Scholar
58.Hu, L., Choi, J.W., Yang, Y., Jeong, S., La Mantia, F., Cui, L-F., and Cui, Y.: Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. U.S.A. 106, 2149021494 (2009).CrossRefGoogle ScholarPubMed