Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T07:17:46.189Z Has data issue: false hasContentIssue false

Surfactant and thioacetamide-assisted reflux synthesis of Bi2S3 nanowires

Published online by Cambridge University Press:  27 August 2014

Weidong Xiang
Affiliation:
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
Yuxiang Yang*
Affiliation:
School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, China
Junya Yang
Affiliation:
School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, China
Hongming Yuan
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Jie An
Affiliation:
School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, China
Jing Wei
Affiliation:
School of Chemistry and Molecular Engineering, East China University of Science & Technology, 200237, China
Xiangnong Liu
Affiliation:
Analysis Test Center, Yangzhou University, Yangzhou 225009, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Pure single-crystalline bismuth (III) sulfide (Bi2S3) nanowires with lengths of the long and short axes being 1.58–1.75 μm and 40 nm were prepared by a simple surfactant-assisted reflux method in the presence of thioacetamide, which served as both the sulfur source and a “soft template” in the formation of bismuth sulfide nanostructures. The effects of different surfactant, surfactant molecular weight, solvent medium, and sulfur source on the morphology, structure, and phase composition of the as-prepared Bi2S3 products were discussed. The formation of long Bi2S3 nanowires was probably via the mechanism of pyrolysis of bismuth (III) sulfide complexes dimer and continuous growth of crystalline nuclei along rod-shaped micelles originated from “soft-template” of polyethylene glycol (PEG-800). Besides, ultraviolet–visible spectroscopic (UV-Vis), and photoluminescent (PL) Bi2S3 band features indicated that the nanowires have excellent optical properties, in the optical field of potential applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wu, C-Y., Yu, S-H., and Chen, S-F.: Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions. J. Mater. Chem. 16, 33263331 (2006).Google Scholar
Han, W-Q., Fan, S-S., Li, Q-Q., and Hu, Y-D.: Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277(5330), 12871289 (1997).Google Scholar
Li, L-S., Sun, N-J., Huang, Y-Y., Qin, Y., Zhao, N-N., Gao, J-N., Li, M-X., Zhou, H-H., and Qi, L-M.: Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks. Adv. Funct. Mater. 18, 11941201 (2008).CrossRefGoogle Scholar
Zhao, R-X., Xu, Z-D., Li, H., and Xu, H-L.: Preparation and characterization of bismuth sulfide single crystal nanorods in ionic liquids. Chin. J. Inorg. Chem. 23(5), 839843 (2007).Google Scholar
Boudjouk, P. and Remington, M.P. Jr.: Tris(benzylthiolato)bismuth efficient precursor to phase-pure polycrystalline Bi2S3. Inorg. Chem. 37(14), 35383541 (1998).Google Scholar
Yao, K., Gong, W-W., Hu, Y-F., Liang, X-L., Chen, Q., and Peng, L-M.: Individual Bi2S3 nanowire-based room-temperature H2 sensor. J. Phys. Chem. C 112(23), 87218724 (2008).Google Scholar
Peng, X-G., Manna, L., Yang, W-D., Wickham, J., Scher, E., Kadavanich, A., and Alivisatos, A.P.: Shape control of CdSe nanocrystals. Nature 404, 5961 (2000).CrossRefGoogle ScholarPubMed
Aizpurua, J., Hanarp, P., Sutherland, D.S., Kall, M., Bryant, G.W., and Garcia de Abajo, F.J.: Optical properties of gold nanorings. Phys. Rev. Lett. 90(5), 057401 (2003).CrossRefGoogle ScholarPubMed
Yu, X-L. and Cao, C-B.: Photoresponse and field-emission properties of bismuth sulfide nanoflowers. Cryst. Growth Des. 8(11), 39513955 (2008).Google Scholar
Tahir, A.A., Ehsan, M.A., Mazhar, M., Upul Wijayantha, K.G., Zeller, M., and Hunter, A.D.: Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films. Chem. Mater. 22, 50845092 (2010).Google Scholar
Ye, C-H., Meng, G-W., Jiang, Z., Wang, Y-H., Wang, G-Z., and Zhang, L-D.: Rational growth of Bi2S3 nanotubes from quasi-two-dimensional precursors. J. Am. Chem. Soc. 124(51), 1518015181 (2002).CrossRefGoogle ScholarPubMed
Sambhaji, S., Warule, R.V., Kashid, R.D., Shinde, N.S., Chaudhari, B.B., and Kale, M.A.: Architectured Bi2S3 nanoflowers: Photoenhanced field emission study. J. Nano Res. 14(6), 889 (2012).Google Scholar
Xie, G., Qiao, Z-P., Zeng, M-H., Chen, X-M., and Gao, S-L.: A single-source approach to Bi2S3 and Sb2S3 nanorods via a hydrothermal treatment. Cryst. Growth Des. 4(3), 513516 (2004).Google Scholar
Wu, T., Zhou, X-G., Zhang, H., and Zhong, X-H.: Bi2S3 nanostructures: A new photocatalyst. J. Nano Res. 3, 379386 (2010).Google Scholar
Sigman, M.B. Jr. and Korgel, B.A.: Synthesis of Bi2S3(Bismuthinite) nanorods, nanowires, and nanofabric. Chem. Mater. 17(7), 16551660 (2005).Google Scholar
Lu, Q-Y., Gao, F., and Komarneni, S.: Biomolecule-assisted synthesis of highly ordered snowflakelike structures of bismuth sulfide nanorods. J. Am. Chem. Soc. 126(1), 5455 (2004).Google Scholar
Zhang, B., Ye, X-C., Hou, W-Y., Zhao, Y., and Xie, Y.: Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. J. Phys. Chem. B 110(18), 89788985 (2006).Google Scholar
Desai, J.D. and Lokhande, C.D.: Solution growth of microcrystalline Sb2S3 thin films from thioacetamide bath. J. Non-Cryst. Solids 181, 7076 (1995).Google Scholar
Murphy, C.J. and Jana, N.R.: Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 14(1), 8082 (2002).Google Scholar
Wang, N., Cai, Y., and Zhang, R-Q.: Growth of nanowires. Mater. Sci. Eng., R 60, 151 (2008).Google Scholar
Gangulia, A.K., Vaidyab, S., and Ganguly, A.: Design of anisotropic nanostructures using microemulsions. Indian J. Chem. 51A(1–2), 245251 (2012).Google Scholar
Robb, I.D. and Smith, R.: Adsorption of polymers at the solid-liquid interface: A comparison of the e.p.r. and i.r. techniques. Polymer 18(5), 500504 (1977).CrossRefGoogle Scholar
Chen, R., So, M-H., Che, C-M., and Sun, H-Z.: Controlled synthesis of high crystalline bismuth sulfide nanorods: Using bismuth citrate as a precursor. J. Mater. Chem. 15, 45404545 (2005).Google Scholar
Zhang, H., Ji, Y., Ma, X., Xu, J., and Yang, D.: Long Bi2S3 nanowires prepared by a simple hydrothermal method. Nanotechnology 14, 974977 (2003).Google Scholar
Hu, H-M., Deng, C-H., and Huang, X-H.: Hydrothermal growth of center-hollow multigonal star-shaped ZnO architectures assembled by hexagonal conic nanotubes. Mater. Chem. Phys. 121(1–2), 364369 (2010).Google Scholar
Dung, B.T.: New segmented block copolymers based on hard and soft segments using selectively reacting bifunctional coupling agents. Master’s thesis, Department of Polymer Blend, Leibniz-Institute of Polymer Research Dresden, Germany, February 27, 2007.Google Scholar
An, C-H., Wang, S-T., and Liu, Y-Q.: Controlled creation of self-supported patterns of radially aligned one-dimensional Bi2S3 nanostructures. Mater. Lett. 61, 22842287 (2007).Google Scholar
Veliotti, J.B.: New Research on Solid State Chemistry (Nova Science Publishers, Inc, New York, 2007); pp. 241267.Google Scholar
Liu, Z., Liang, J., Li, S., Peng, S., and Qian, Y.: Synthesis and growth mechanism of Bi2S3 nanoribbons. Chem.-Eur. J. 10, 634640 (2004).Google Scholar
Zhu, G-Q., Bian, X-B., Wang, X-B., Li, J., and Chen, B.: Effect of mixed solvent on the morphologies of nanostructured Bi2S3 prepared by solvothermal synthesis. Mater. Lett. 62(15), 23352338 (2008).Google Scholar
Bantianmaoxiong: Technology of Electron Microscope (China Metallurgical Industry Press, Beijing, 1988).Google Scholar
Zhang, Z-J. and Chen, X-Y.: Biomolecule-assisted hydrothermal synthesis of Sb2S3 and Bi2S3 nanocrystals and their -elevated-temperature oxidation behavior for conversion into α-Sb2O4 and Bi2O3. J. Phys Chem. Solids 70, 11211131 (2009).Google Scholar
Yu, Y., Jin, C-H., Wang, R-H., Chen, Q., and Peng, L-M.: High-quality ultralong Bi2S3 nanowires: Structure, growth, and properties. J. Phys. Chem. B 109(40), 1877218776 (2005).Google Scholar
Lu, J., Han, Q-F., Yang, X-J., Lu, L-D., and Wang, X.: Preparation of Bi2S3 nanorods via a hydrothermal approach. Mater. Lett. 61(16), 34253428 (2007).Google Scholar
Chen, W. and Sun, S-G.: Spectral analysis in nanometer material science. Spectrosc. Spectral Anal. 22(3), 504510 (2002).Google Scholar
Variano, B.F., Hwang, D.M., Sandroff, C.J., Wiltzius, P., Jing, T-W., and Ong, N.P.: Quantum effects in anisotropic semiconductor clusters: Colloidal suspensions of bismuth sesquisulfide and antimony sesquisulfide. J. Phys. Chem. B 91(26), 64556458 (1987).Google Scholar
Yu, X-L., Cao, C-B., and Zhu, H-S.: Synthesis and photoluminescence properties of Bi2S3 nanowires via surfactant micelle-template inducing reaction. Solid State Commun. 134(4), 239243 (2005).Google Scholar