Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T07:26:06.790Z Has data issue: false hasContentIssue false

Surface stability and electronic structure of hydrogen- and fluorine-terminated diamond surfaces: A first-principles investigation

Published online by Cambridge University Press:  31 January 2011

Fatih G. Sen*
Affiliation:
Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, Ontario N9B 3P4, Canada
Yue Qi
Affiliation:
Materials and Processes Laboratory, General Motors R&D Center, Warren, Michigan 48090-9055
Ahmet T. Alpas
Affiliation:
Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, Ontario N9B 3P4, Canada
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effect of fluorine termination on the stability and bonding structure of diamond (111) surfaces were studied using first-principles calculations and compared with hydrogen termination by creating mixed F- and H-containing diamond surfaces. Surface F atoms, similar to H, formed sp3-type bonding with C atoms, which resulted in a more stable 1 × 1 configuration. The surface phase diagram built showed that the F-terminated surface was more stable in a larger-phase space than H termination, because of the formation of strong ionic C–F bonds and the development of attractive forces between F atoms, resulting in close packing of large F atoms. Hence, the F-terminated diamond surface was more chemically inert. A large repulsive force was required to bring two F-terminated surfaces together, because of the negative charge on F atoms, resulting in reduced adhesion tendency between two F-terminated diamond surfaces compared with H-terminated surfaces.

Type
Outstanding Symposium Papers
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1May, P.W.: The new diamond age? Science 319, 1490 (2008).CrossRefGoogle ScholarPubMed
2Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng., R 37, 129 (2002).Google Scholar
3Andersson, J., Erck, R.A., and Erdemir, A.: Frictional behavior of diamondlike-carbon films in vacuum and under varying water vapor pressure. Surf. Coat. Technol. 163–164, 535 (2003).Google Scholar
4Erdemir, A.: The role of hydrogen in tribological properties of diamond-like carbon films. Surf. Coat. Technol. 146–147, 292 (2001).CrossRefGoogle Scholar
5Donnet, C.: Recent progress on the tribology of doped diamond-like and carbon alloy coatings: A review. Surf. Coat. Technol. 100–101, 180 (1998).CrossRefGoogle Scholar
6Qi, Y., Konca, E., and Alpas, A.T.: Atmospheric effects on the adhesion and friction between non-hydrogenated diamond-like carbon (DLC) coating and aluminum: A first principles investigation. Surf. Sci. 600, 2955 (2006).CrossRefGoogle Scholar
7Grischke, M., Bewilogua, K., Trojan, K., and Dimigen, H.: Application-oriented modifications of deposition processes for diamond-like-carbon-based coatings. Surf. Coat. Technol. 74–75, 739 (1995).CrossRefGoogle Scholar
8Sánchez-López, J. and Fernández, A.: Doping and alloying effects on DLC coatings, in Tribology of Diamond-Like Carbon Films: Fundamentals and Applications, edited by Donnet, C. and Erdemir, A. (Springer, 2008), p. 311.CrossRefGoogle Scholar
9Touhara, H. and Okino, F.: Property control of carbon materials by fluorination. Carbon 38, 241 (2000).Google Scholar
10Ishihara, M., Kosaka, T., Nakamura, T., Tsugawa, K., Hasegawa, M., Kokai, F., and Koga, Y.: Antibacterial activity of fluorine incorporated DLC films. Diamond Relat. Mater. 15, 1011 (2006).Google Scholar
11Hakovirta, M., He, X.M., and Nastasi, M.: Optical properties of fluorinated diamond-like carbon films produced by pulsed glow discharge plasma immersion ion processing. J. Appl. Phys. 88, 1456 (2000).Google Scholar
12Hakovirta, M., Lee, D.H., He, X.M., and Nastasi, M.: Synthesis of fluorinated diamond-like carbon films by the plasma immersion ion processing technique. J. Vac. Sci. Technol., A 19, 782 (2001).Google Scholar
13He, X-M., Hakovirta, M., Peters, A.M., Taylor, B., and Nastasi, M.: Fluorine and boron co-doped diamond-like carbon films deposited by pulsed glow discharge plasma immersion ion processing. J. Vac. Sci. Technol., A 20, 638 (2002).CrossRefGoogle Scholar
14Huang, K.P., Lin, P., and Shih, H.C.: Structures and properties of fluorinated amorphous carbon films. J. Appl. Phys. 96, 354 (2004).Google Scholar
15Yu, G.Q., Tay, B.K., and Sun, Z.: Fluorinated amorphous diamond-like carbon films deposited by plasma-enhanced chemical vapor deposition. Surf. Coat. Technol. 191, 236 (2005).Google Scholar
16Prioli, R., Jacobsohn, L.G., Costa, M.E.H. Maia da, and Freire, F.L. Jr.: Nanotribological properties of amorphous carbon-fluorine films. Tribol. Lett. 15, 177 (2003).CrossRefGoogle Scholar
17Nakamura, T., Ohana, T., Hasegawa, M., Tsugawa, K., Suzuki, M., Ishihara, M., Tanaka, A., and Koga, Y.: Chemical modification of diamond surfaces with fluorine-containing functionalities. New Diamond Front. Carbon Technol. 15, 313 (2005).Google Scholar
18Kulinich, S.A. and Farzaneh, M.: On wetting behavior of fluorocarbon coatings with various chemical and roughness characteristics. Vacuum 79, 255 (2005).CrossRefGoogle Scholar
19Jacobsohn, L.G., Franceschini, D.F., Costa, M.E.H. Maia da, and Freire, F.L. Jr.: Structural and mechanical characterization of fluorinated amorphous-carbon films deposited by plasma decom-position of CF4-CH4 gas mixtures. J. Vac. Sci. Technol., A 18, 2230 (2000).CrossRefGoogle Scholar
20Donnet, C., Fontaine, J., Grill, A., Patel, V., Jahnes, C., and Belin, M.: Wear-resistant fluorinated diamondlike-carbon films. Surf. Coat. Technol. 94–95, 531 (1997).Google Scholar
21Nakamatsu, K-I., Yamada, N., Kanda, K., Haruyama, Y., and Matsui, S.: Fluorinated diamond-like carbon coating as antisticking layer on nanoimprint mold. Jpn. J. Appl. Phys. 45, L954 (2006).CrossRefGoogle Scholar
22Yamada, N., Nakamatsu, K-I., Kanda, K., Haruyama, Y., and Matsui, S.: Surface evaluation of fluorinated diamond-like carbon thin film as an antisticking layer of nanoimprint mold. Jpn. J. Appl. Phys. 46, 6373 (2007).Google Scholar
23Freedman, A. and Stinespring, C.D.: Fluorination of diamond (100) by atomic and molecular beams. Appl. Phys. Lett. 57, 1194 (1990).CrossRefGoogle Scholar
24Freedman, A.: Halogenation of diamond (100) and (111) surfaces by atomic beams. J. Appl. Phys. 75, 3112 (1994).CrossRefGoogle Scholar
25Ando, T., Yamamoto, K., Matsuzawa, M., Takamatsu, Y., Kawasaki, S., Okino, F., Touhara, H., Kamo, M., and Sato, Y.: Direct interaction of elemental fluorine with diamond surfaces. Diamond Relat. Mater. 5, 1021 (1996).CrossRefGoogle Scholar
26Patterson, D.E., Hauge, R.H., and Margrave, J.L.: Fluorinated diamond films, slabs, and grit, in New Materials Approaches to Tribology: Theory and Applications, edited by Pope, L.E., Fehrenbacher, L.L., and Winer, W.O. (Mater. Res. Soc. Symp. Proc., 140, Pittsburgh, PA, 1989), p. 351.Google Scholar
27Morar, J.F., Himpsel, F.J., Hollinger, G., Jordan, J.L., Hughes, G., and McFeely, F.R.: C 1s excitation studies of diamond (111). II. Unoccupied surface states. Phys. Rev. B 33, 1346 (1986).CrossRefGoogle ScholarPubMed
28Morar, J.F., Himpsel, F.J., Hollinger, G., Jordan, J.L., Hughes, G., and McFeely, F.R.: C 1s excitation studies of diamond (111). I. Surface core levels. Phys. Rev. B 33, 1340 (1986).CrossRefGoogle ScholarPubMed
29Yamada, T., Seki, H., and Chuang, T.J.: Adsorption of fluorine on bare, hydrogen- and hydrocarbon-covered diamond C(111) surfaces. Jpn. J. Appl. Phys. 39, 1826 (2000).CrossRefGoogle Scholar
30Smentkowski, V.S. and Yates, J.T. Jr.: Fluorination of diamond surfaces by irradiation of perfluorinated alkyl iodides. Science 271, 193 (1996).Google Scholar
31Smentkowski, V.S., Yates, J.T. Jr., Chen, X., and Goddard, W.A. III: Fluorination of diamond—C4F9I and CF3I photochemistry on dia-mond (100). Surf. Sci. 370, 209 (1997).Google Scholar
32Kasai, H., Kogoma, M., Moriwaki, T., and Okazaki, S.: Surface structure estimation by plasma fluorination of amorphous carbon, diamond, graphite and plastic film surfaces. J. Phys. D: Appl. Phys. 19, L225 (1986).CrossRefGoogle Scholar
33Miyake, S., Kaneko, R., Kikuya, Y., and Sugimoto, I.: Micro-tribolog-ical studies on fluorinated carbon films. J. Tribol. 113, 384 (1991).Google Scholar
34Butter, R.S., Waterman, D.R., Lettington, A.H., Ramos, R.T., and Fordham, E.J.: Production and wetting properties of fluorinated diamond-like carbon coatings. Thin Solid Films 311, 107 (1997).CrossRefGoogle Scholar
35Trojan, K., Grischke, M., and Dimigen, H.: Network modification of DLC coatings to adjust a defined surface energy. Phys. Status Solidi A 145, 575 (1994).Google Scholar
36Freire, F.L. Jr., Costa, M.E.H. Maia da, Jacobsohn, L.G., and Franceschini, D.F.: Film growth and relationship between microstructure and mechanical properties of a-C:H:F films deposited by PECVD. Diamond Relat. Mater. 10, 125 (2001).Google Scholar
37Jacobsohn, L.G., Costa, M.E.H. Maia da, Trava-Airoldi, V.J., and Freire, F.L. Jr.: Hard amorphous carbon-fluorine films deposited by PECVD using C2H2-CF4 gas mixtures as precursor atmospheres. Diamond Relat. Mater. 12, 2037 (2003).CrossRefGoogle Scholar
38Liu, S., Gangopadhyay, S., Sreenivas, G., Ang, S.S., and Naseem, H.A.: Infrared studies of hydrogenated amorphous carbon (a-C:H) and its alloys (a-C:H,N,F). Phys. Rev. B 55, 13020 (1997).Google Scholar
39Choy, K-L. and Zhao, J.: The mechanical properties of DLC and fluorinated DLC films deposited using unbalanced magnetron sputter ion plating method. Scr. Mater. 39, 839 (1998).Google Scholar
40Jung, H-S. and Park, H-H.: Structural and electrical properties of co-sputtered fluorinated amorphous carbon film. Thin Solid Films 420–421, 248 (2002).Google Scholar
41Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140, 1133 (1965).CrossRefGoogle Scholar
42Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C.: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992).CrossRefGoogle ScholarPubMed
43Kresse, G. and Hafner, J.: Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115 (1993).Google Scholar
44Kresse, G. and Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metalamorphous- semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994).Google Scholar
45Kresse, G. and Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).Google Scholar
46Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).Google Scholar
47Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).Google Scholar
48Haruna, K., Maeta, H., Ohashi, K., and Koike, T.: Thermal expansion coefficient of synthetic diamond single crystal at low temperatures. Jpn. J. Appl. Phys. 31, 2527 (1992).Google Scholar
49Pandey, K.C.: New dimerized-chain model for the reconstruction of the diamond (111)-(2 1) surface. Phys. Rev. B 25, 4338 (1982).CrossRefGoogle Scholar
50Kern, G., Hafner, J., and Kresse, G.: Atomic and electronic structure of diamond (111) surfaces I. Reconstruction and hydrogen-induced de-reconstruction of the one dangling-bond surface. Surf. Sci. 366, 445 (1996).Google Scholar
51Scholze, A., Schmidt, W.G., and Bechstedt, F.: Structure of the diamond (111) surface: Single-dangling-bond versus triple-dangling-bond face. Phys. Rev. B 53, 13725 (1996).Google Scholar
52Huisman, W.J., Peters, J.F., Vries, S.A. De, Vlieg, E., Yang, W-S., Derry, T.E., and Veen, J.F. van der: Structure and morphology of the as-polished diamond(111)-1 1 surface. Surf. Sci. 387, 342 (1997).CrossRefGoogle Scholar
53Schaich, T., Braun, J., Toennies, J.P., Buck, M., and Wöll, C.: Structural changes accompanying the hydrogen desorption from the diamond C(111):H(1 1)-surface revisited by helium atom scattering. Surf. Sci. 385, L958 (1997).CrossRefGoogle Scholar
54Köhler, T., Sternberg, M., Porezag, D., and Frauenheim, T.: Surface properties of diamond (111): 1 1, 2 1, and 2 2 reconstructions. Phys. Status Solidi A 154, 69 (1996).CrossRefGoogle Scholar
55Harris, S.J. and Belton, D.N.: Thermochemistry on a fluorinated diamond (111) surface. Appl. Phys. Lett. 59, 1949 (1991).Google Scholar
56Piekarczyk, W. and Prawer, S.: On the behavior of diamond crystal surfaces during heating in fluorine gas and fluorocarbon-fluorine gas mixtures. Diamond Relat. Mater. 3, 66 (1993).CrossRefGoogle Scholar
57Larsson, K. and Lunell, S.: Stability of halogen-terminated diamond (111) surfaces. J. Phys. Chem. A 101, 76 (1997).CrossRefGoogle Scholar
58Petrini, D. and Larsson, K.: Theoretical study of the thermodynamic and kinetic aspects of terminated (111) diamond surfaces. J. Phys. Chem. C 112, 3018 (2008).CrossRefGoogle Scholar
59Boettger, J.C.: Nonconvergence of surface energies obtained from thin-film calculations. Phys. Rev. B 49, 16798 (1994).CrossRefGoogle ScholarPubMed
60Hong, S. and Chou, M.Y.: Effect of hydrogen on the surface-energy anisotropy of diamond and silicon. Phys. Rev. B 57, 6262 (1998).Google Scholar
61Dion, M., Rydberg, H., Schroder, E., Langreth, D.C., and Lundqvist, B.I.: Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).Google Scholar
62Wu, Q. and Yang, W.: Empirical correction to density-functional theory for van der Waals interactions. J. Chem. Phys. 116, 515 (2002).CrossRefGoogle Scholar
63Grimme, S.: Accurate description of van der Waals complexes by density-functional theory including empirical corrections. J. Comput. Chem. 25, 1463 (2004).CrossRefGoogle Scholar
64Silvestrelli, P.L.: Van der Waals interaction in DFT made easy by Wannier functions. Phys. Rev. Lett. 100, 053002 (2008).CrossRefGoogle Scholar
65Qi, Y. and Hector, L.G. Jr.: Adhesion and adhesive transfer at aluminum/diamond interfaces: A first principles study. Phys. Rev. B 69, 235401 (2004).Google Scholar
66Zisman, W.: Contact angle, wettability and adhesion, in Advances in Chemistry Series, edited by Fowkes, F.M. (American Chemical Society, Washington, DC, 1964).Google Scholar
67Lide, D.R.: CRC Handbook of Chemistry and Physics (Taylor and Francis, Boca Raton, FL, 2007).Google Scholar
68Bader, R.F.W.: Atoms in molecules. Acc. Chem. Res. 18, 9 (1985).CrossRefGoogle Scholar
69Henkelman, G., Arnaldsson, A., and Joìnsson, H.: A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354 (2006).Google Scholar
70Saito, R., Yagi, M., Kimura, T., Dresselhaus, G., and Dresselhaus, M.S.: Electronic structure of fluorine doped graphite nanoclusters. J. Phys. Chem. Solids 60, 715 (1999).Google Scholar
71Dag, S. and Ciraci, S.: Atomic scale study of superlow friction between hydrogenated diamond surfaces. Phys. Rev. B 70, 241401 (2004).CrossRefGoogle Scholar