Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T03:23:12.795Z Has data issue: false hasContentIssue false

Surface integrity aspects for NiTi shape memory alloys during wire electric discharge machining: A review

Published online by Cambridge University Press:  17 February 2020

Himanshu Bisaria*
Affiliation:
Mechanical Engineering Department, MNNIT Allahabad, Prayagraj 211004, India
Pragya Shandilya
Affiliation:
Mechanical Engineering Department, MNNIT Allahabad, Prayagraj 211004, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

NiTi shape memory alloys (SMAs) are extensively used in various significant areas such as aerospace industries, biomedical sector, automobile industries, and robotics field because of their inherent properties, namely, shape memory effect and superelasticity. Nevertheless, the machining of these alloys is a problematic task by conventional machining practices because of various difficulties such as strain hardening, tool failure, high machining time, and poor surface quality. In recent years, researchers have explored various advanced/unconventional machining processes to surmount these challenges and improve the performance characteristics of NiTi SMAs. Wire electrical discharge machining (WEDM) is an effective and reasonable alternative to machine these hard-to-machine alloys among the other available advanced machining processes. A brief overview, characteristics, applications, and conventional machining of NiTi SMAs have been incorporated in this study. This review article provides substantial insight into the various aspects of surface integrity (SI) for NiTi SMAs using WEDM. The current study highlights literature review on the research work accomplished so far in the domain of SI aspects for NiTi-based SMAs, namely, surface characteristics, react layer, phase analysis, elemental composition, micro-hardness, shape recovery ability, and residual stress in WEDM.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

Jani, J.M, Leary, M., Subic, A., and Gibson, M.A.: A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078 (2014).CrossRefGoogle Scholar
Karimzadeh, M., Aboutalebi, M.R., Salehi, M.T., Abbasi, S.M., and Morakabati, M.: Adjustment of aging temperature for reaching superelasticity in highly Ni-rich Ti–51.5Ni NiTi shape memory alloy. Mater. Manuf. Processes 31, 1014 (2016).CrossRefGoogle Scholar
Cisse, C., Zaki, W., and Zineb, T.B.: A review of constitutive tutive models and modeling techniques for shape memory alloys. Int. J. Plast. 76, 244 (2016).CrossRefGoogle Scholar
Kaya, I., Tobe, H., Karaca, H.E., Basaran, B., Nagasako, M., Kainuma, R., and Chumlyakov, Y.: Effects of aging on the shape memory and superelasticity behavior of ultra-high strength Ni54Ti46 alloys under compression. Mater. Sci. Eng., A 678, 93 (2016).CrossRefGoogle Scholar
Liu, J.F., Li, C., Fang, X.Y., Jordon, J.B., and Guo, Y.B.: Effect of wire-EDM on fatigue of nitinol shape memory alloy. Mater. Manuf. Processes 33, 1809 (2018).CrossRefGoogle Scholar
Bisaria, H. and Shandilya, P.: Study on effect of machining parameters on performance characteristics of Ni-rich NiTi shape memory alloy during wire electric discharge machining. Mater. Today: Proceedings 5, 3316 (2018).Google Scholar
Datta, S., Raza, M.S., Saha, P., and Pratihar, D.K.: Effects of process parameters on the quality aspects of weld-bead in laser welding of NiTinol sheets. Mater. Manuf. Processes 34, 648 (2019).CrossRefGoogle Scholar
Roy, B.K. and Mandal, A.: Surface integrity analysis of Nitinol-60 shape memory alloy in WEDM. Mater. Manuf. Processes 34, 1091 (2019).CrossRefGoogle Scholar
Ramachandran, B., Chen, C.H., Chang, P.C., Kuo, Y.K., Chien, C., and Wu, S.K.: Thermal and transport properties of as-grown Ni-rich TiNi shape memory alloys. Intermetallics 60, 79 (2015).CrossRefGoogle Scholar
Gao, W-H., Meng, X-L., Cai, W., and Zhao, L-C.: Effects of Co and Al addition on martensitic transformation and microstructure in ZrCu-based shape memory alloys. Trans. Nonferrous Met. Soc. China 25, 850 (2015).CrossRefGoogle Scholar
Spriano, S., Balagna, C., Ferri, A., Dotti, F., Villa, E., Nespoli, A., and Toric, A.: Processing and surface treatments for pseudoelastic wires and strands. Mater. Manuf. Processes 32, 394 (2017).CrossRefGoogle Scholar
Ibrahim, M.K., Hamzah, E., Saud, S.N., Nazim, E.M., and Bahador, A.: Parameter optimization of microwave sintering porous Ti–23% Nb shape memory alloys for biomedical applications. Trans. Nonferrous Met. Soc. China 28, 700 (2018).CrossRefGoogle Scholar
Abidia, M.H., Al-Ahmaria, A.M., Umera, U., and Rasheed, M.S.: Multi-objective optimization of micro-electrical discharge machining of nickel-titanium-based shape memory alloy using MOGA-II. Measurement 125, 336 (2018).CrossRefGoogle Scholar
Majumde, H. and Maity, K.: Application of GRNN and multivariate hybrid approach to predict and optimize WEDM responses for Ni–Ti shape memory alloy. Appl. Soft Comput. 70, 665 (2018).CrossRefGoogle Scholar
Bisaria, H. and Shandilya, P.: Experimental study on response parameters of Ni-rich NiTi shape memory alloy during wire electric discharge machining. IOP Conf. Ser.: Mater. Sci. Eng. 330, 012070 (2018).CrossRefGoogle Scholar
Wu, S.K., Lin, H.C., and Chen, C.C.: A study on the machinability of a Ti49.6Ni50.4 shape memory alloy. Mater. Lett. 40, 27 (1999).CrossRefGoogle Scholar
Lin, H.C., Lin, K.M., and Chen, Y.C.: A study on the machining characteristics of TiNi shape memory alloys. J. Mater. Process. Technol. 105, 327 (2000).CrossRefGoogle Scholar
Weinert, K. and Petzoldt, V.: Machining of NiTi based shape memory alloys. Mater. Sci. Eng., A 378, 180 (2004).CrossRefGoogle Scholar
Mehrpouya, M., Gisario, A., and Elahinia, M.: Laser welding of NiTi shape memory alloy: A review. J. Manuf. Process. 31, 162 (2018).CrossRefGoogle Scholar
Kaya, E. and Kaya, I.: A review on machining of NiTi shape memory alloys, the process and post process perspective. Int. J. Adv. Manuf. Technol. 100, 2045 (2019).CrossRefGoogle Scholar
Velmurugan, C., Senthilkumar, V., Dinesh, S., and Arulkirubakaran, D.: Machining of NiTi-shape memory alloys—A review. Mach. Sci. Technol. 22, 355 (2017).CrossRefGoogle Scholar
Manjaiah, M., Narendranath, S., and Basavarajappa, S.: Review on non-conventional machining of shape memory alloys. Trans. Nonferrous Met. Soc. China 24, 12 (2014).CrossRefGoogle Scholar
Haddad, M.I., Alihoseini, F., Hadi, M., and Mohammadi, A.: An experimental investigation of cylindrical wire electrical discharge turning process. Int. J. Adv. Manuf. Technol. 46, 1119 (2010).CrossRefGoogle Scholar
Gupta, K. and Jain, N.K.: Overview of Wire Spark Erosion Machining (WSEM) (Springer, Singapore, 2016); p. 17.Google Scholar
Kumar, A., Kumar, V., and Kumar, J.: Investigation of machining characterization for wire wear ratio & MRR on pure titanium in WEDM process through response surface methodology. Proc. Inst. Mech. Eng. E J. Process. Mech. Eng. 232, 108 (2016).CrossRefGoogle Scholar
Giridharan, A. and Samuel, G.L.: Analysis on the effect of discharge energy on machining characteristics of wire electric discharge turning process. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 230, 2064 (2015).CrossRefGoogle Scholar
Pramanik, A., Islam, M.N., Boswell, B., Basak, A.K., Dong, Y.U., and Littlefair, G.: Accuracy and finish during wire electrical discharge machining of metal matrix composites for different reinforcement size and machining conditions. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 232, 1068 (2016).CrossRefGoogle Scholar
Majumder, H. and Maity, K.P.: Predictive analysis on responses in WEDM of titanium grade 6 using general regression neural network (GRNN) and multiple regression analysis (MRA). Silicon 10, 1763 (2017).CrossRefGoogle Scholar
Bisaria, H. and Shandilya, P.: Experimental investigation on wire electric discharge machining (WEDM) of Nimonic C-263 superalloy. Mater. Manuf. Processes 34, 83 (2019).CrossRefGoogle Scholar
Ulutan, D. and Ozel, T.: Machining induced surface integrity in titanium and nickel alloys, A review. Int. J. Mach. Tool Manufact. 51, 250 (2011).CrossRefGoogle Scholar
Thakur, A. and Gangopadhyay, S.: State-of-the-art in surface integrity in machining of nickel-based super alloys. Int. J. Mach. Tool Manufact. 100, 25 (2016).CrossRefGoogle Scholar
Markopoulos, A.P., Pressas, I.S., and Manolakos, D.E.: A review on the machining of nickel–titanium shape memory alloys. Rev. Adv. Mater. Sci. 42, 28 (2015).Google Scholar
Jawahir, I.S., Brinksmeier, E., M'saoubi, R., Aspinwall, D.K., Outeiro, J.C., Meyer, D., Umbrello, D., and Jayal, A.D.: Surface integrity in material removal processes, Recent advances. CIRP Ann. - Manuf. Technol. 60, 603 (2011).CrossRefGoogle Scholar
Grzesik, W., Kruszynski, B., and Ruszaj, A.: Surface integrity of machined surface. In Surface Integrity in Machining (Springer, London, UK, 2010); p. 143.CrossRefGoogle Scholar
Veiga, C., Davim, J.P., and Loureiro, A.J.R.: Review on machinability of titanium alloys, the process perspective. Rev. Adv. Mater. Sci. 34, 148 (2013).Google Scholar
Kumar, P.K. and Lagoudas, D.C.: Introduction to Shape Memory Alloys, Shape Memory Alloys, Modelling and Engineering Applications (Springer, New York, 2008).Google Scholar
Rao, A., Srinivasa, A.R., and Reddy, J.N.: Introduction to Shape Memory Alloys, Design of Shape Memory Alloy (SMA) Actuators (Springer, London, UK, 2015).CrossRefGoogle Scholar
Srinivasan, A.V. and Mcfarland, M.D.: Smart Structures, Analysis and Design (Cambridge University Press, Cambridge, 2000). ISBN:9780521659772.Google Scholar
Oliveira, S.A., Savi, M.A., and Zouain, N.: A three-dimensional description of shape memory alloy thermomechanical behavior including plasticity. J. Braz. Soc. Mech. Sci. Eng. 38, 1451 (2016).CrossRefGoogle Scholar
Mihálcz, I.: Fundamental characteristics and design method for nickel titanium shape memory alloy. Period. Polytech., Mech. Eng. 45, 75 (2001).Google Scholar
Shimizu, K.: History of the Association of Shape Memory Alloys, Shape Memory and Superelastic Alloys (Woodhead Publishing, London, UK, 2011). ISBN:978-1-84569-707-5.Google Scholar
Kohl, M.: Shape Memory Actuation, Shape Memory Microactuators (Springer, London, UK, 2010).Google Scholar
Huang, W., Ding, Z., Wang, C., Wei, J., Zhao, Y., and Purnawali, H.: Shape memory materials. Mater. Today 13, 54 (2010).CrossRefGoogle Scholar
Sun, L. and Huang, W.M.: Nature of the multistage transformation in shape memory alloys upon heating. Met. Sci. Heat Treat. 51, 573 (2009).CrossRefGoogle Scholar
Bhargaw, H.N., Ahmed, M., and Sinha, P.: Thermo-electric behaviour of NiTi shape memory alloy. Trans. Nonferrous Met. Soc. China 23, 2329 (2013).CrossRefGoogle Scholar
Wanga, Z., Zua, X., and Fub, Y.: Review on the temperature memory effect in shape memory alloys. Int. J. Smart Nano Mater. 2, 101 (2011).CrossRefGoogle Scholar
Strnadel, B., Ohashi, S., Ohtsuka, H., Ishihara, T., and Miyazaki, S.: Cyclic stress–strain characteristics of Ti–Ni and Ti–Ni–Cu shape memory alloys. Mater. Sci. Eng., A 202, 148 (1995).CrossRefGoogle Scholar
Potapov, P., Shelyakov, A., Gulyaev, A., Svistunova, E., Matveeva, N., and Hodgson, D.: Effect of Hf on the structure of Ni–Ti martensitic alloys. Mater. Lett. 32, 247 (1997).CrossRefGoogle Scholar
Hsieh, S. and Wu, S.: Room-temperature phases observed in Ti53−xNi47Zrx high-temperature shape memory alloys. J. Alloys Compd. 226, 276 (1998).CrossRefGoogle Scholar
Bisaria, H. and Shandilya, P.: The machining characteristics and surface integrity of Ni-rich NiTi shape memory alloy using wire electric discharge machining. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233, 1068 (2018).CrossRefGoogle Scholar
Hsieh, T-S., Huang, S-F., Chen, S-L., Lin, M-H., Ou, S-F., and Chang, W-T.: Surface modification of TiNi-based shape memory alloys by dry electrical discharge machining. J. Mater. Process. Technol. 221, 279 (2015).Google Scholar
Elahinia, M.H., Hashemi, M., Tabesh, M., and Bhaduri, S.B.: Manufacturing and processing of NiTi implants, a review. Prog. Mater. Sci. 57, 911 (2012).CrossRefGoogle Scholar
Jiang, S., Hu, L., Zhang, Y., and Liang, Y.: Nanocrystallization and amorphization of NiTi shape memory alloy under severe plastic deformation based on local canning compression. J. Non-Cryst. Solids 367, 23 (2013).CrossRefGoogle Scholar
Belbasi, M., Salehi, M.T., and Seyedin, S.H.: Hot tensile property and fracture behaviour of as-cast Ni49Ti36Hf15 shape memory alloy produced by vacuum induction melting. Mater. Des. 49, 981 (2013).CrossRefGoogle Scholar
Karaca, H.E., Acar, E., Ded, G.S., Saghaian, S.M., Basaran, B., Tobe, H., Kok, M., Maier, H.J., Noebe, R.D., and Chumlyakov, Y.I.: Microstructure and transformation related behaviors of a Ni45.3Ti29.7Hf20Cu5 high temperature shape memory alloy. Mater. Sci. Eng., A 627, 82 (2015).CrossRefGoogle Scholar
Wheeler, J.M., Niederberger, C., Raghavan, R., Thompson, G., Weaver, M., and Michler, J.: Elevated temperature, in situ micromechanical characterization of a high temperature ternary shape memory alloy. J. Miner. Met. Mater. Soc. 67, 2908 (2015).CrossRefGoogle Scholar
El-Bagoury, N., Hessien, M.M., and Zaki, Z.I.: Influence of aging on microstructure, martensitic transformation and mechanical properties of NiTiRe shape memory alloy. Met. Mater. Int. 20, 997 (2014).CrossRefGoogle Scholar
Lu, X., Su, D., Chen, F., Liu, W., Shi, Y., Tong, Y., and Li, L.: Martensitic transformation and its thermal cycling stability in Ni56Mn21Cu4Ga19 high-temperature shape memory ribbon. Acta Metall. Sin. 28, 243 (2015).CrossRefGoogle Scholar
Krooß, P., Niendorf, T., Kadletz, P.M., Somsen, C., Gutmann, M.J., Chumlyakov, Y.I., Schmahl, W.W., Eggeler, G., and Maier, H.J.: Functional fatigue and tension–compression asymmetry in [001]-oriented Co49Ni21Ga30 high-temperature shape memory alloy single crystals. Shape Memory and Superelasticity 1, 6 (2015).CrossRefGoogle Scholar
Benafan, O., Noebe, R.D., Halsmer, T.J., Padula, S.A., Bigelow, G.S., Gaydosh, D.J., and Garg, A.: Constant-strain thermal cycling of a Ni50.3Ti29.7Hf20 high-temperature shape memory alloy. Shape Memory Superelasticity 2, 218 (2016).CrossRefGoogle Scholar
Birk, T., Biswas, S., Frenzel, J., and Eggeler, G.: Twinning-induced elasticity in NiTi shape memory alloys. Shape Memory and Superelasticity 2, 145 (2016).CrossRefGoogle Scholar
Frenzel, J., Zhang, Z., Neuking, K., and Eggeler, G.: High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles. J. Alloys Compd. 28, 214 (2004).CrossRefGoogle Scholar
Wang, G.C., Hu, K.P., Tong, Y.X., Tian, B., Chen, F., Li, L., Zheng, Y.F., and Gao, Z.Y.: Influence of Nb content on martensitic transformation and mechanical properties of TiNiCuNb shape memory alloys. Intermetallics 72, 30 (2016).CrossRefGoogle Scholar
Wei, L. and Xinqing, Z.: Mechanical properties and transformation behavior of NiTiNb shape memory alloys. Chin. J. Aeronaut. 22, 540 (2009).CrossRefGoogle Scholar
Pushin, V.G., Kuranova, N.N., and Pushin, A.V.: Structure and mechanical properties of shape-memory alloys of the Ti–Ni–Cu system. Met. Sci. Heat Treat. 57, 739 (2016).CrossRefGoogle Scholar
Maji, B.C., Krishnan, M., Verma, A., Basu, R., Samajdar, I., and Ray, R.K.: Effect of pre-straining on the shape recovery of Fe–Mn–Si–Cr–Ni shape memory alloys. Metall. Mater. Trans. A 46, 639 (2015).CrossRefGoogle Scholar
Buchheit, T.E., Susan, D.F., Massad, J.E., Mcelhanon, J.R., and Noebe, R.D.: Mechanical and functional behavior of high-temperature Ni–Ti–Pt shape memory alloys. Metall. Mater. Trans. A 47, 1587 (2016).CrossRefGoogle Scholar
Kim, J.H., Kim, K.M., Yeom, J.T., and Young, S.: Effect of yttrium on martensite-austenite phase transformation temperatures and high temperature oxidation kinetics of Ti–Ni–Hf high-temperature shape memory alloys. Met. Mater. Int. 22, 204 (2016).CrossRefGoogle Scholar
Zhang, X., Liu, Q., Zeng, X., Sui, J., Cai, W., and Liu, A.: Effect of annealing temperature on the shape memory properties of cold-rolled dual-phase Ni–Mn–Ga–Gd alloy. Acta Metall. Sin. 28, 1403 (2015).CrossRefGoogle Scholar
Prokoshkin, S., Brailovski, V., Dubinskiy, S., Zhukova, Y., Sheremetyev, V., Konopatsky, A., and Inaekyan, K.: Manufacturing, structure control, and functional testing of Ti–Nb-based SMA for medical application. Shape Memory and Superelasticity 2, 130 (2016).CrossRefGoogle Scholar
Pushin, V.G., Kuranova, N.N., Pushin, A.V., Korolev, A.V., and Kourov, N.I.: Structural and phase transformations in quasibinarytini–TiCu alloys with thermomechanical shape memory effects. Phys. Met. Metallogr. 116, 1221 (2015).CrossRefGoogle Scholar
Pushin, V.G., Kuranova, N.N., Pushin, A.V., Korolev, A.V., and Kourov, N.I.: Effect of copper on the structure–phase transformations and the properties of quasi-binary TiNi–TiCu alloys. Tech. Phys. 61, 554 (2016).CrossRefGoogle Scholar
Hsieh, S.F. and Wu, S.K.: Martensitic transformation of quaternary Ti50.5−XNi49.5ZrX/2HfX/2 (X = 0–20 at.%) shape memory alloys. Mater. Charact. 45, 143 (2000).CrossRefGoogle Scholar
Sadrnezhaad, S.K., Arami, H., Keivan, H., and Khalifehzadeh, R.: Powder metallurgical fabrication and characterization of nanostructured porous NiTi shape-memory alloy. Mater. Manuf. Processes 21, 727 (2006).CrossRefGoogle Scholar
Ma, J., Karaman, I., and Noebe, R.D.: High temperature shape memory alloys. Int. Mater. Rev. 55, 257 (2010).CrossRefGoogle Scholar
Fujita, A., Fukamichi, K., Gejima, F., Kainuma, R., and Ishida, K.: Magnetic properties and large magnetic-field-induced strains in off-stoichiometric Ni–Mn–Al heusler alloys. Appl. Phys. Lett. 77, 3054 (2000).CrossRefGoogle Scholar
Firstov, G.S., Humbeeck, J.V., and Koval, Y.N.: High temperature shape memory alloys problems and prospects. J. Intell. Mater. Syst. Struct. 17, 1041 (2006).CrossRefGoogle Scholar
Firstov, G.S., Humbeeck, J.V., and Koval, Y.N.: High-temperature shape memory alloys, Some recent developments. Mater. Sci. Eng., A 378, 2 (2004).CrossRefGoogle Scholar
Wuttig, M., Li, J., and Craciunescu, C.: A new ferromagnetic shape memory alloy system. Scr. Mater. 44, 2393 (2001).CrossRefGoogle Scholar
Sakamoto, T., Fukuda, T., Kakeshita, T., and Kishio, K.: Magnetic field-induced strain in iron-based ferromagnetic shape memory alloys. J. Appl. Phys. 93, 8647 (2003).CrossRefGoogle Scholar
Baumann, M.A.: Nickel–titanium, options and challenges. Dent. Clin. North Am. 48, 55 (2004).CrossRefGoogle ScholarPubMed
Leng, J., Lan, X., Liu, Y., and Du, S.: Shape-memory polymers and their composites, stimulus methods and applications. Prog. Mater. Sci. 56, 1077 (2011).CrossRefGoogle Scholar
Otsuka, K. and Wayman, C.M.: Cu-Based Shape Memory Alloys, Shape Memory Materials (Cambridge University Press, 1999).Google Scholar
Sutou, Y., Omori, T., Kainuma, R., and Ishida, K.: Ductile Cu–Al–Mn based shape memory alloys, general properties and applications. Mater. Sci. Technol. 4, 896 (Cambridge, UK 2008).CrossRefGoogle Scholar
Maruyama, T. and Kubo, H.: Ferrous (Fe-Based) Shape Memory Alloys (SMAs), Properties, Processing and Applications, Shape Memory and Superelastic Alloys, Technologies and Applications (Woodhead Publishing, Cornwall, UK 2011).Google Scholar
Janke, L., Czaderski, C., Motavalli, M., and Ruth, J.: Applications of shape memory alloys in civil engineering structures-overview, limits and new ideas. Mater. Struct. 38, 578 (2005).Google Scholar
Bogue, R.: Shape-memory materials, a review of technology and applications. Assemb. Autom. 29, 214 (2009).CrossRefGoogle Scholar
Miyazaki, S. and Sachdeva, R.L.: Shape Memory Effect and Superelasticity in Ti–Ni Alloys, Shape Memory Alloys for Biomedical Applications (Woodhead Publishing, London, UK 2009).Google Scholar
Petrini, L. and Migliavacca, F.: Biomedical applications of shape memory alloys. J. Metall. 1, 2011 (2011).Google Scholar
Pfeifer, R., Müller, C.W., Hurschler, C., Kaierle, S., Wesling, V., and Haferkamp, H.: Adaptable orthopaedic shape memory implants. Procedia CIRP 5, 253 (2013).CrossRefGoogle Scholar
Lagoudas, D., Rediniotis, O.K., and Khan, M.M.: Applications of shape memory alloys to bioengineering and biomedical technology. In Proceedings of the 4th International Workshop on Scattering Theory and Biomedical Applications, Vol. 195. (World Scientific, Greece, 2000). DOI: 10.1142/9789812792327_0020.Google Scholar
Duerig, T., Pelton, A., and Stöckel, D.: An overview of nitinol medical applications. Mater. Sci. Eng., A 273, 149 (1999).CrossRefGoogle Scholar
Marchand, C., Heim, F., Durand, B., and Chafke, N.: Nitinol stent for percutaneous heart valve implantation, material shape setting. Mater. Manuf. Processes 26, 181 (2011).CrossRefGoogle Scholar
Sharma, P.: Shape memory alloy actuator for bio-medical application. Int. J. Eng. Res. Ind. Appl. 6, 60 (2016).Google Scholar
Feninat, E.I., Laroche, G., Fiset, M., and Mantovani, D.: Shape memory materials for biomedical applications. Adv. Eng. Mater. 4, 91 (2002).3.0.CO;2-B>CrossRefGoogle Scholar
Morgan, N.B.: Medical shape memory alloy-the market and its products. Mater. Sci. Eng., A 378, 16 (2004).CrossRefGoogle Scholar
Thompson, S.A.: An overview of nickel–titanium alloys used in dentistry. Int. Endod. J. 33, 297 (2000).CrossRefGoogle ScholarPubMed
Gil, F.J. and Planell, J.A.: Shape memory alloys for medical applications. Proc. Inst. Mech. Eng. H 212, 473 (1998).CrossRefGoogle ScholarPubMed
Sutapun, B., Tabib-Azar, M., and Huff, M.A.: Applications of shape memory alloys in optics. Appl. Opt. 37, 6811 (1998).CrossRefGoogle ScholarPubMed
Song, G., Ma, N., and Li, H.: Applications of shape memory alloys in civil structures. Eng. Struct. 28, 1266 (2006).CrossRefGoogle Scholar
Hartl, D. and Lagoudas, D.: Aerospace applications of shape memory alloys. J. Aero. Eng. 221, 535 (2007).Google Scholar
Quan, D. and Hai, X.: Shape memory alloy in various aviation field. Procedia Eng. 99, 1241 (2015).CrossRefGoogle Scholar
Huang, W.: On the selection of shape memory alloys for actuators. Mater. Des. 23, 11 (2002).CrossRefGoogle Scholar
Kumar, S.M. and Lakshmi, M.V.: Applications of shape memory alloys in MEMS devices. Int. J. Adv. Res. 2, 1122 (2013).Google Scholar
Kaynak, Y., Karaca, H.E., Noebe, R.D., and Jawahir, I.S.: Analysis of tool-wear and cutting force components in dry, preheated, and cryogenic machining of NiTi shape memory alloys. Procedia CIRP 8, 498 (2013).CrossRefGoogle Scholar
Guo, Y., Klink, A., Fu, C., and Snyder, J.: Machinability and surface integrity of Nitinol shape memory alloy. CIRP Ann. - Manuf. Technol. 62, 83 (2013).CrossRefGoogle Scholar
Kuppuswamy, R. and Yui, A.: High-speed micromachining characteristics for the NiTi shape memory alloys. Int. J. Adv. Manuf. Technol. 93, 11 (2017).CrossRefGoogle Scholar
Weinert, K., Petzoldt, V., and Kotter, D.: Turning and drilling of NiTi shape memory alloys. CIRP Ann. - Manuf. Technol. 53, 65 (2004).CrossRefGoogle Scholar
Kaynak, Y., Karaca, H.E., and Jawahir, I.S.: Surface integrity characteristics of NiTi shape memory alloys resulting from dry and cryogenic machining. Procedia CIRP 13, 393 (2014).CrossRefGoogle Scholar
Mehrpouya, M., Shahedin, A.M., Dawood, S.D.S., and Ariffin, A.K.: An investigation on the optimum machinability of NiTi based shape memory alloy. Mater. Manuf. Processes 32, 1497 (2017).CrossRefGoogle Scholar
Kirmacioglu, K.E., Kaynak, Y., and Benafan, O.: Machinability of Ni- rich NiTiHf high temperature shape memory alloy. Smart Mater. Struct. 29, 055008 (2019).CrossRefGoogle Scholar
Bendict, G.F.: Nontraditional Manufacturing Processes (Taylor and Francis, Boca Raton, US 1987). ISBN0-8247-7452-7.Google Scholar
Gupta, K. and Jain, N.K.: On surface integrity of miniature spur gears manufactured by wire electrical discharge machining. Indian J. Sci. Technol. 72, 1735 (2014).Google Scholar
El-Hofy, H.: Advance Machining Processes (McGraw-Hill, US 2005). DOI: 10.1036/0071466940.Google Scholar
Sánchez, J.A. and Ortega, N.: Wire Electrical Discharge Machines, Machine Tools for High Performance Machining (Springer, London, UK 2009). ISBN 978-1-84800-379-8.Google Scholar
Jain, V.K.: Advance Machining Processes (Allied Publication, New Delhi, 2010). ISBN 81-7764-294-4.Google Scholar
Ghodsiyeh, D., Golshan, A., and Shirvanehdeh, J.A.: Review on current research trends in wire electrical discharge machining (WEDM). Indian J. Sci. Technol. 6, 4128 (2013).Google Scholar
Groover, M.P.: Fundamentals of Modern Manufacturing, Materials, Processes, and Systems (John Wiley & Sons, US 2010). ISBN:978-0470-467002.Google Scholar
Singh, B. and Misra, J.P.: Modelling of surface characteristics of wire-electro discharge machined combustor material specimens. Mater. Res. Express 6, 056549 (2019).CrossRefGoogle Scholar
Sharma, P., Chakradhar, D., and Narendranath, S.: Evaluation of WEDM performance characteristics of Inconel 706 for turbine disk application. Mater. Des. 88, 558 (2015).CrossRefGoogle Scholar
Yadav, V.K., Kumar, P., and Dvivedi, A.: Effect of tool rotation in near-dry EDM process on machining characteristics of HSS. Mater. Manuf. Process. 34, 779 (2019).CrossRefGoogle Scholar
Kumar, V., Kumar, V., and Jangra, K.K.: An experimental analysis and optimization of machining rate and surface characteristics in WEDM of Monel-400 using RSM and desirability approach. J. Ind. Eng. Technol. 11, 297 (2015).Google Scholar
Newton, T.R., Melkote, S.N., Watkins, T.R., Trejo, R.M., and Reister, L.: Investigation of the effect of process parameters on the formation and characteristics of recast layer in wire-EDM of Inconel 718. Mater. Sci. Eng., A 513, 208 (2009).CrossRefGoogle Scholar
Sharma, P., Chakradhar, D., and Narendranath, S.: Effect of wire material on productivity and surface integrity of WEDM processed Inconel 706 for aircraft application. J. Mater. Eng. Perform. 25, 3672 (2013).CrossRefGoogle Scholar
Zhang, Z., Ming, W., Huang, H., Chen, Z., Xu, Z., Huang, Y., and Zhang, G.: Optimization of process parameters on surface integrity in wire electrical discharge machining of tungsten tool YG15. Int. J. Adv. Manuf. Technol. 81, 1303 (2015).CrossRefGoogle Scholar
Manjaiah, M., Narendranath, S., and Basavarajappa, S.: A Review on Machining of Titanium based alloys using EDM and WEDM. Rev. Adv. Mater. Sci. 36, 89 (2014).Google Scholar
Majumder, H. and Maity, K.: Prediction and optimization of surface roughness and micro-hardness using grnn and MOORA-fuzzy—A MCDM approach for nitinol in WEDM. Measurement 118, 1 (2018).CrossRefGoogle Scholar
Lotfineyestanak, A.A. and Daneshmand, S.: The effect of operational cutting parameters on nitinol-60 in wire electrodischarge machining. Adv. Mater. Sci. Eng. 2013, 1 (2013).CrossRefGoogle Scholar
Manjaiah, M., Narendranath, S., Basavarajappa, S., and Gaitonde, V.N.: Wire electric discharge machining characteristics of titanium nickel shape memory alloy. Trans. Nonferrous Met. Soc. China 24, 3201 (2014).CrossRefGoogle Scholar
Liu, J.F., Li, L., and Guo, Y.B.: Surface integrity evolution from main cut to finish trim cut in W-EDM of shape memory alloy. Appl. Surf. Sci. 308, 253 (2014).CrossRefGoogle Scholar
Liu, J.F., Guo, Y.B., Butler, T.M., and Weaver, M.L.: Crystallography, compositions, and properties of white layer by wire electrical discharge machining of nitinol shape memory alloy. Mater. Des. 109, 1 (2016).CrossRefGoogle Scholar
Sharma, N., Raj, T., and Jangra, K.K.: Parameter optimization and experimental study on wire electrical discharge machining of porous Ni40Ti60 alloy. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 231, 956 (2015).CrossRefGoogle Scholar
Bisaria, H. and Shandilya, P.: Experimental studies on electrical discharge wire cutting of Ni-rich NiTi shape memory alloy. Mater. Manuf. Processes 33, 977 (2017).CrossRefGoogle Scholar
Hsieh, S.F., Chen, S.L., Lin, H.C., Lin, M.H., and Chiou, S.Y.: The machining characteristics and shape recovery ability of Ti–Ni–X (X = Zr, Cr) ternary shape memory alloys using the wire electro-discharge machining. Int. J. Mach. Tool Manufact. 49, 509 (2009).CrossRefGoogle Scholar
Manjaiah, M., Narendranath, S., Basavarajappa, S., and Gaitonde, V.N.: Experimental investigations on performance characteristics in wire electro discharge machining of Ti50Ni42.4Cu7.6 shape memory alloy. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 227, 1180 (2013).Google Scholar
Manjaiah, M., Narendranath, S., and Basavarajappa, S.: Wire electro discharge machining performance of TiNiCu shape memory alloy. Silicon 8, 467 (2015).CrossRefGoogle Scholar
Manjaiah, M., Narendranath, S., Basavarajappa, S., and Gaitonde, V.N.: Effect of electrode material in wire electro discharge machining characteristics of Ti50Ni50−xCux shape memory alloy. Precis. Eng. 41, 68 (2015).CrossRefGoogle Scholar
Manjaiah, M., Narendranath, S., Basavarajappa, S., and Gaitonde, V.N.: Investigation on material removal rate, surface and subsurface characteristics in wire electro discharge machining of Ti50Ni50−xCux shape memory alloy. Proc. Inst. Mech. Eng., Part L 232, 64 (2015).Google Scholar
Manjaiah, M., Laubscher, R.F., Narendranath, S., Basavarajappa, S., and Gaitonde, V.N.: Evaluation of wire electro discharge machining characteristics of Ti50Ni50−xCux shape memory alloys. J. Mater. Res. 31, 1801 (2016).CrossRefGoogle Scholar
Soni, H., Sannayellappa, N., and Rangarasaiah, R.M.: An experimental study of influence of wire electro discharge machining parameters on surface integrity of TiNiCo shape memory alloy. J. Mater. Res. 32, 3100 (2017).CrossRefGoogle Scholar
Soni, H., Narendranath, S., and Ramesh, M.R.: Effects of wire electro-discharge machining process parameters on the machined surface of Ti50Ni49Co1 shape memory alloy. Silicon 11, 733 (2018).CrossRefGoogle Scholar
Soni, H., Narendranath, S., and Ramesh, M.R.: Experimental investigation on effects of wire electro discharge machining of Ti50Ni45Co5 shape memory alloys. Silicon 10, 2483 (2018).CrossRefGoogle Scholar
Shandilya, P., Bisaria, H., and Jain, P.K.: Parametric study on the recast layer during EDWC of a Ni-rich NiTi shape memory alloy. J. Micro-Manufacturing 1, 134 (2018).Google Scholar
Lin, H.C., Lin, K.M., Chen, Y.S., and Chu, C.L.: The wire electro-discharge machining characteristics of Fe–30Mn–6Si and Fe–30Mn–6Si–5Cr shape memory alloys. J. Mater. Process. Technol. 161, 435 (2005).CrossRefGoogle Scholar
Bisaria, H. and Shandilya, P.: Study on crater depth during material removal in WEDC of Ni-rich nickel–titanium shape memory alloy. J. Braz. Soc. Mech. Sci. Eng. 41, 157 (2019).CrossRefGoogle Scholar
Lin, H.C. and Wu, S.K.: Strengthening effect on shape recovery characteristic of the equiatomic TiNi alloy. Scr. Metall. Mater. 26, 59 (1992).CrossRefGoogle Scholar
Manjaiah, M. and Laubscher, R.F.: Study on recast layer thickness and residual stress during WEDM of SMAs. Emerging Mater. Res. 6, 82 (2017).CrossRefGoogle Scholar
Bisaria, H. and Shandilya, P.: Processing of curved profiles on Ni-rich nickel–titanium shape memory alloy by WEDM. Mater. Manuf. Processes 34, 1333 (2019).CrossRefGoogle Scholar
Wang, Y., Wang, Q., Ding, Z., He, D., Xiong, W., Chen, S., and Li, Z.: Study on the mechanism and key technique of ultrasonic vibration and magnetic field complex assisted WEDMLS thick shape memory alloy workpiece. J. Mater. Process. Technol. 261, 251 (2018).CrossRefGoogle Scholar
Takalea, A.M. and Chougule, N.K.: Effect of wire electro discharge machining process parameters on surface integrity of Ti49.4Ni50.6 shape memory alloy for orthopedic implant application. Mater. Sci. Eng., C 97, 264 (2019).CrossRefGoogle Scholar
Magabe, R., Sharma, N., Gupta, K., and Davim, J.P.: Modeling and optimization of wire-EDM parameters for machining of Ni55.8Ti shape memory alloy using hybrid approach of Taguchi and NSGA-II. Int. J. Adv. Manuf. Technol. 102, 1703 (2019).CrossRefGoogle Scholar