Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T01:31:40.520Z Has data issue: false hasContentIssue false

Surface enthalpy and enthalpy of water adsorption of nanocrystalline tin dioxide: Thermodynamic insight on the sensing activity

Published online by Cambridge University Press:  15 March 2011

Yuanyuan Ma
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616
Ricardo H.R. Castro
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616
Wei Zhou
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616
Alexandra Navrotsky*
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Tin dioxide (SnO2) is an important base material for a variety of gas sensors and catalysts. However, there is a lack of experimental data on the energetics of SnO2 surfaces and their water adsorption. In this work, the surface energies of anhydrous and hydrated SnO2 nanoparticles were measured by combining high-temperature oxide melt solution calorimetry and water adsorption calorimetry. The SnO2 nanoparticles were synthesized through oxidation of metallic tin using nitric acid followed by heat treatment at different temperatures to achieve surface areas ranging from 4000 to 10,000 m2·mol−1(25–65 m2·g−1). The enthalpy of the anhydrous surface is 1.72 ± 0.01 J·m−2, and that of the hydrated surface is 1.49 ± 0.01 J·m−2. The integral heat of water adsorption is −75 kJ·mol−1, with a chemisorbed maximum coverage of ∼5 H2O·nm−2. SnO2 has a lower surface energy and less exothermic enthalpy of water adsorption than the isostructural TiO2 (rutile) reported previously. This comparison suggests that the excellent sensing properties of SnO2 may be a consequence of its relatively low affinity for surface H2O molecules that compete with other gases for adsorption.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Barsan, N., Schweizer-Berberich, M., and Gopel, W.: Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: A status report. Fresenius J. Anal. Chem. 365, 287 (1999).CrossRefGoogle Scholar
2.Batzill, M. and Diebold, U.: The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47 (2005).CrossRefGoogle Scholar
3.Batzill, M.: Surface science studies of gas sensing materials: SnO2. Sensors. 6, 1345 (2006).CrossRefGoogle Scholar
4.Franke, M.E., Koplin, T.J., and Simon, U.: Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small. 2, 36 (2006).CrossRefGoogle ScholarPubMed
5.Huang, J. and Wan, Q.: Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors. 9, 9903 (2009).CrossRefGoogle ScholarPubMed
6.Basu, S. and Basu, P.K.: Nanocrystalline metal oxides for methane sensors: Role of noble metals. J. Sens. 2009, 861968 (2009).CrossRefGoogle Scholar
7.Zhang, J., Liu, X.H., Wu, S.H., Xu, M.J., Guo, X.Z., and Wang, S.R.: Au nanoparticle-decorated porous SnO2 hollow spheres: A new model for a chemical sensor. J. Mater. Chem. 20, 6453 (2010).CrossRefGoogle Scholar
8.Qian, L.H., Wang, K., Li, Y., Fang, H.T., Lu, Q.H., and Ma, X.L.: CO sensor based on Au-decorated SnO2 nanobelt. Mater. Chem. Phys. 100, 82 (2006).CrossRefGoogle Scholar
9.Epifani, M., Arbiol, J., Pellicer, E., Comini, E., Siciliano, P., Faglia, G., and Morante, J.R.: Synthesis and gas-sensing properties of Pd-doped SnO2 nanocrystals: A case study of a general methodology for doping metal oxide nanocrystals. Cryst. Growth Des. 8, 1774 (2008).CrossRefGoogle Scholar
10.Gong, J.W., Chen, Q.F., Lian, M.R., Liu, N.C., Stevenson, R.G., and Adami, F.: Micromachined nanocrystalline silver doped SnO2 H2S sensor. Sens. Actuators, B 114, 32 (2006).CrossRefGoogle Scholar
11.Kolmakov, A., Klenov, D.O., Lilach, Y., Stemmer, S., and Moskovits, M.: Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 5, 667 (2005).CrossRefGoogle ScholarPubMed
12.Kong, X.H. and Li, Y.D.: High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature. Sens. Actuators, B 105, 449 (2005).CrossRefGoogle Scholar
13.Oldfield, G., Ung, T., and Mulvaney, P.: Au@SnO2 core-shell nanocapacitors. Adv. Mater. 12, 1519 (2000).3.0.CO;2-W>CrossRefGoogle Scholar
14.Choi, U.S., Sakai, G., Shimanoe, K., and Yamazoe, N.: Sensing properties of Au-loaded SnO2-Co3O4 composites to CO and H2. Sens. Actuators, B 107, 397 (2005).CrossRefGoogle Scholar
15.Castro, R.H.R., Hidalgo, P., Perez, H.E.M., Ramirez-Fernandez, F.J., and Gouvea, D.: Relationship between surface segregation and rapid propane electrical response in Cd-doped SnO2 nanornaterials. Sens. Actuators, B 133, 263 (2008).CrossRefGoogle Scholar
16.Hidalgo, P., Castro, R.H.R., Coelho, A.C.V., and Gouvea, D.: Surface segregation and consequent SO2 sensor response in SnO2-NiO. Chem. Mater. 17, 4149 (2005).CrossRefGoogle Scholar
17.Boyle, J.F. and Jones, K.A.: Effect of CO, water-vapor and surface-temperature on conductivity of a SnO2 gas sensor. J. Electron. Mater. 6, 717 (1977).CrossRefGoogle Scholar
18.Mulheran, P.A. and Harding, J.H.: The stability of SnO2 surfaces. Modell. Simul.Mater. Sci. Eng. 1, 39 (1992).CrossRefGoogle Scholar
19.Oviedo, J. and Gillan, M.J.: Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations. Surf. Sci. 463, 93 (2000).CrossRefGoogle Scholar
20.Yamaguchi, Y., Tabata, K., and Yashima, T.: First-principles calculations on the surface electronic and reactive properties of M/SnO2 (M = Ge, Mn) (110). J. Mol. Struct. 714, 221 (2005).CrossRefGoogle Scholar
21.Evarestov, R.A., Bandura, A.V., and Proskurov, E.V.: Plain DFT and hybrid HF-DFT LCAO calculations of SnO2 (110) and (100) bare and hydroxylated surfaces. Phys. Status Solidi. 243, 1823 (2006) (b).CrossRefGoogle Scholar
22.Batzill, M., Diebold, U., Bergermayer, W., and Tanaka, I.: Tuning the chemical functionality of a gas sensitive material: Water adsorption on SnO2(101). Surf. Sci. 600, 29 (2006).CrossRefGoogle Scholar
23.Zhang, P., Xu, F., Navrotsky, A., Lee, J.S., Kim, S.T., and Liu, J.: Surface enthalpies of nanophase ZnO with different morphologies. Chem. Mater. 19, 5687 (2007).CrossRefGoogle Scholar
24.Levchenko, A.A., Li, G.S., Boerio-Goates, J., Woodfield, B.F., and Navrotsky, A.: TiO2 stability landscape: Polymorphism, surface energy, and bound water energetics. Chem. Mater. 18, 6324 (2006).CrossRefGoogle Scholar
25.Zhou, W., Ushakov, S.V., Wang, T., Ekerdt, J.G., Demkov, A.A., and Navrotsky, A.: Hafnia: Energetics of thin films and nanoparticles. J. Appl. Phys. 107, 123514 (2010).CrossRefGoogle Scholar
26.Radha, A.V., Bomati-Miguel, O., Ushakov, S.V., Navrotsky, A., and Tartaj, P.: Surface enthalpy, enthalpy of water adsorption, and phase stability in nanocrystalline monoclinic zirconia. J. Am. Ceram. Soc. 92, 133 (2009).CrossRefGoogle Scholar
27.Navrotsky, A.: Progress and new directions in high-temperature calorimetry. Phys. Chem. Miner. 2, 89 (1977).CrossRefGoogle Scholar
28.Navrotsky, A.: Progress and new directions in high-temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 (1997).CrossRefGoogle Scholar
29.Ushakov, S.V. and Navrotsky, A.: Direct measurements of water adsorption enthalpy on hafnia and zirconia. Appl. Phys. Lett. 87, 164103 (2005).CrossRefGoogle Scholar
30.Costa, G.C.C., Ushakov, S.V., Castro, R.H.R., Navrotsky, A., and Muccillo, R.: Calorimetric measurement of surface and interface enthalpies of yttria-stabilized zirconia (YSZ). Chem. Mater. 22, 2937 (2010).CrossRefGoogle Scholar
31.Robie, R.A. and Hemingway, B.S.: Thermodynamic properties of minerals and related substrate at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperature. U.S. Geol. Surv. Bull. 2131, 461 (1995).Google Scholar