Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T07:21:18.806Z Has data issue: false hasContentIssue false

Surface characterization of carbon fibers by inverse gas chromatography at low pressures

Published online by Cambridge University Press:  31 January 2011

J. Rubio
Affiliation:
Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, Arganda del Rey, Madrid, Spain
F. Rubio
Affiliation:
Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, Arganda del Rey, Madrid, Spain
J. L. Fierro
Affiliation:
Instituto de Catálisis y Petroquímica, Consejo Superior de Investigaciones Científicas, Tres Cantos, Madrid, Spain
M. C. Gutierrez
Affiliation:
Instituto de Técnica Aeroespacial, Instituto Nacional de Técnica Aeroespacial, Torrejón de Ardoz, Madrid, Spain
J. L. Oteo
Affiliation:
Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, Arganda del Rey, Madrid, Spain
Get access

Abstract

Carbon fiber surfaces were analyzed by inverse gas chromatography (IGC) and x-ray photoelectron spectroscopy (XPS). IGC measurements were carried out at infinite and finite dilution by using neutral and specific probes. At infinite dilution the dispersive component of the surface free energy and the acid–base indexes were obtained. At finite dilution the energy distribution functions were calculated. Three carbon fibers were analyzed, one untreated and two fibers treated with different sizings. The fibers have similar dispersive components of surface free energy but their acid–base characteristics are markedly different. The untreated fiber has an acidic surface, and the sized fibers have a surface with high base character. The energy distribution functions show different peaks assigned to active sites existing on the carbon fiber surfaces. The use of acid or basic probes provides different energy distribution functions with good correlation with the base and acid character of the fiber surface. Changes in surface heterogeneity revealed by energy distribution functions were correlated also with surface chemical composition derived from high-resolution XPS measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ishida, H. and Koenig, J.L., in Proc. 1st Int. Conf. on Composite Interfaces, edited by Ishida, H. and Koenig, J.L. (ICCI-I, Cleveland, OH, 1986), p. 392.Google Scholar
2.Ulkem, I. and Schreiber, H.P., Comp. Interf. 2, 253 (1994).CrossRefGoogle Scholar
3.Sellitti, C., Koenig, J.L., and Ishida, H., Interfaces in Polymer, Ceramic, and Metal Matrix Composites (Elsevier, Amsterdam, The Netherlands, 1988).Google Scholar
4.Ishitani, A., Molecular Characterization of Composite Interfaces (Plenum Press, New York, 1985).Google Scholar
5.Scola, D.A. and Brooks, C.S., J. Adhesion 2, 213 (1970).CrossRefGoogle Scholar
6.Grundke, K., Boerner, M., and Jacobasch, H.J., Colloids Surf. 58, 47 (1991).CrossRefGoogle Scholar
7.Donnet, J.B. and Park, S.J., Carbon 29, 955 (1991).CrossRefGoogle Scholar
8.Donnet, J.B., Wang, J.K., Rebouillat, S., and Peng, J.C.M., Carbon Fibers (Marcel Dekker, New York, 1998).CrossRefGoogle Scholar
9.Gutmann, V., The Donor-Acceptor Approach to Molecular Interactions (Plenum Press, New York, 1978).CrossRefGoogle Scholar
10.Nelsen, F.M. and Eggerstsen, F.T., Ann. Chem. 30, 1387 (1958).CrossRefGoogle Scholar
11.Boer, J.H. de, The Dynamical Character of Adsorption (Oxford University Press, London, United Kingdom, 1953).Google Scholar
12.Fowkes, F.M., Ind. Eng. Chem. 56, 40 (1964).CrossRefGoogle Scholar
13.Dorris, G.M. and Gray, D.G., J. Colloid Interface Sci. 77, 353 (1980).CrossRefGoogle Scholar
14.Schultz, J., Lavielle, L., and Martin, C., J. Phys. Chem. 84, 231 (1987).Google Scholar
15.Vukov, A.J. and Gray, D.G., in Inverse Gas Chromatography, edited by Lloyd, D.R., Ward, T.C., and Schreiber, H.P. (ACS Symposium Series, Toronto, Canada, 1988), p. 169.Google Scholar
16.Li, S.K., Smith, R.P., and Neumann, A.W., J. Adhesion 17, 105 (1984).CrossRefGoogle Scholar
17.Donnet, J.B. and Park, S.J., Carbon 29, 955 (1991).CrossRefGoogle Scholar
18.Park, S.J. and Brendle, M., J. Colloid Interface Sci. 188, 336 (1997).CrossRefGoogle Scholar
19.Schultz, J. and Lavielle, L., Inverse Gas Chromatography, edited by Lloyd, D.R., Ward, T.C., and Schreiber, H.P. (ACS Symposium Series, Toronto, Canada, 1988), p. 185.Google Scholar
20.Gutierrez, M.C., Rubio, J., Rubio, F., and Oteo, J.L., J. Chromatog. A845, 53 (1999).CrossRefGoogle Scholar
21.Saint-Flour, C. and Papirer, E., Ind. Eng. Chem. Prod. Res. Dev. 21, 666 (1982).CrossRefGoogle Scholar
22.Conder, J.R. and Young, C.L., Physicochemical Measurements by Gas Chromatography (John Wiley, New York, 1979).Google Scholar
23.Jaroniec, M. and Madey, R., Physical Adsorption on Heterogeneous Solids (Elsevier, Amsterdam, The Netherlands, 1988).Google Scholar
24.Rudzinski, W. and Everett, D.H., Adsorption of Gases on Heterogeneous Surfaces (Academic Press, New York, 1992).Google Scholar
25.Braüer, P., Fassler, M., and Jaroniec, M., Thin Solid Films 245, 123 (1985).Google Scholar