Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T01:29:57.077Z Has data issue: false hasContentIssue false

Surface and optical properties of porous silicon

Published online by Cambridge University Press:  31 January 2011

S. M. Prokes
Affiliation:
Naval Research Laboratory, Washington D.C. 20375
Get access

Abstract

Although silicon is the material of choice in the semiconductor industry, it has one serious disadvantage: it is an extremely poor optoelectronic material. This is because it is an indirect gap semiconductor, in which radiative transition results in extremely weak light emission in the infrared part of the spectrum. Thus, the discovery of strong visible luminescence from a silicon-based material (porous silicon) has been quite surprising and has generated significant interest, both scientific and technological. This material differs from bulk silicon in one important way, in that it consists of interconnected silicon nanostructures with very large surface to volume ratios. Although the first mechanism proposed to explain this emission process involved carrier recombination within quantum size silicon particles, more recent work has shown that the surface chemistry appears to be the controlling factor in this light emission process. Thus, the aim of this work is to outline the data and arguments that have been presented to support the quantum confinement model, along with the shortcomings of such a model, and to examine more recent models in which the chemical and structural properties of the surface regions of the nanostructures have been incorporated.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Uhlir, A., Bell System Tech J. 35, 333 (1956).CrossRefGoogle Scholar
2.Turner, D. R., J. Electrochem. Soc. 105, 402 (1958).CrossRefGoogle Scholar
3.Unagami, T., Jpn. J. Appl. Phys. 19, 231 (1980).Google Scholar
4.Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
5.Pickering, C., Beale, M. I. J., Robbins, D. J., Pearson, P. J., and Greef, R., J. Phys. C. 17 (1984) 6535.CrossRefGoogle Scholar
6.Ghandhi, S. K., VLSI Fabrication Principles (John Wiley and Sons, New York, 1983).Google Scholar
7.Microcrystalline Semiconductors: Materials Science and Devices, edited by P. M. Fauchet, C. C. Tsai, L. T. Canham, I. Shimizu, and Y. Aoyagi (Mater. Res. Soc. Symp. Proc. 283, Pittsburgh, PA, 1993).Google Scholar
8.Beale, M. I. J., Benjamin, J.D., Uren, M. J., Chew, N. G., and Cullis, A. G., J. Cryst. Growth 75, 408 (1986).Google Scholar
9.Fathauer, R. W., George, T., Kzendzov, A., and Vasquez, R. P., Appl. Phys. Lett. 61, 2350 (1992).Google Scholar
10.Unagami, T. and Seki, M., J. Electrochem. Soc. 125, 1339 (1978).CrossRefGoogle Scholar
11.Bsiesy, A., Vial, J.C., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestein, R., Wasiela, A., Halimaoui, A., and Bomchil, G., Surf. Sci. 254, 195 (1991).CrossRefGoogle Scholar
12.Macauley, J. M., Ross, F. M., Searson, P. C., Sputz, S. K., People, R., and Friedersdorf, L. E., in Light Emission from Silicon, edited by Iyer, S. S., Collins, R. T., and Canham, L. T. (Mater. Res. Soc. Symp. Proc. 256, Pittsburgh, PA, 1992), p. 47.Google Scholar
13.Friedersdorf, L. E., Searson, P. C., Prokes, S. M., Glembocki, O. J., and Macauley, J.M., Appl. Phys. Lett. 60, 2285 (1992).Google Scholar
14.Cullis, A. G., Canham, L. T., and Dosser, O. D., in Light Emission from Silicon, edited by Iyer, S. S., Collins, R. T., and Canham, L. T. (Mater. Res. Soc. Symp. Proc. 256, Pittsburgh, PA, 1992), p. 7.Google Scholar
15.Light Emission from Silicon, edited by S. S. Iyer, R. T. Collins, and L. T. Canham (Mater. Res. Soc. Symp. Proc. 256, Pittsburgh, PA, 1992).Google Scholar
16.Zhang, X. G., Collins, S. D., and Smith, R. L., J. Electrochem. Soc. 136 1561 (1989).Google Scholar
17.Searson, P. C. and Zhang, X. G., J. Electrochem. Soc. 137, 2539 (1990).Google Scholar
18.Foll, H., Appl. Phys. A 53, 8 (1991).CrossRefGoogle Scholar
19.Lehmann, V., J. Electrochem. Soc. 140, 2836 (1993).CrossRefGoogle Scholar
20.Ross, F. M., Natarajan, A., Oskam, G., and Searson, P. C., private communications.Google Scholar
21.Searson, P. C., Macauley, J.M., and Prokes, S. M., J. Electrochem. Soc. 139 3373 (1992).Google Scholar
22.Cullis, A. G. and Canham, L. T., Nature (London) 353, 335 (1991).CrossRefGoogle Scholar
23.Lehmann, V. and Gosele, U., Adv. Mater. 4, 114 (1992).CrossRefGoogle Scholar
24.Beale, M. I. J., Chew, N. G., Uren, M. J., Cullis, A. G., and Benjamin, J.D., Appl. Phys. Lett. 46, 86 (1985).CrossRefGoogle Scholar
25.Beale, M. I. J., Benjamin, J.D., Uren, M. J., Chew, N. G., and Cullis, A. G., J. Cryst. Growth 73, 622 (1985).CrossRefGoogle Scholar
26.Bombhil, G., Herino, R., Barla, K., and Pfister, J. C., J. Electrochem. Soc. 130, 1611 (1983).CrossRefGoogle Scholar
27.Bomchil, G., Herino, R., and Barla, K., in Energy Beam Solid Interactions and Transient Thermal Processing, edited by Nguyen, V. T. and Cullis, A. G. (Mater. Res. Soc. European Symp. Proc. R4, Pittsburgh, PA 1985), p. 463.Google Scholar
28.Searson, P. C., Macauely, J. M., and Ross, F. A., J. Appl. Phys. 72, 253 (1992).Google Scholar
29.Sugiyama, H. and Nittono, O., Jpn. J. Appl. Phys. 28, L2013 (1989).Google Scholar
30.Barla, K., Bomchil, G., Herino, R., Pfister, J. C., and Baruchel, J., J. Cryst. Growth 68, 721 (1984).Google Scholar
31.Phillip, F., Urban, K., and Wilkens, M., Ultramicros. 13, 379 (1984).CrossRefGoogle Scholar
32.Barla, K., Herino, R., Bomchil, G., Pfister, J. C., and Freund, A., J. Cryst. Growth 68, 727 (1984).Google Scholar
33.Young, I. M., Beale, M. I. J., and Benjamin, J. D., Appl. Phys. Lett. 46, 1133 (1985).Google Scholar
34.Sui, S., Leong, P. P., Herman, I. P., Higashi, G. S., and Temkin, H., Appl. Phys. Lett. 60, 2086 (1992).CrossRefGoogle Scholar
35.Tsu, R., Shen, H., and Dutta, M., Appl. Phys. Lett. 60, 112 (1992).Google Scholar
36.Perez, J. M., Villalobos, J., McNeill, P., Prasad, J., Cheek, R., Kelber, J., Estrera, J. P., Stevens, P. D., and Glosser, R., Appl. Phys. Lett. 61, 563 (1992).CrossRefGoogle Scholar
37.Prokes, S. M., Carlos, W. E., and Bermudez, V. M., Appl. Phys. Lett. 61, 1447 (1992).CrossRefGoogle Scholar
38.Yao, T., Konishi, T., Daito, H., and Nishiyama, F., Bull. Am. Phys. Soc. 37, 564 (1992).Google Scholar
39.Vasquez, R. P., Fathauer, R. W., George, T., Ksendzov, A., and Lin, T. L., Appl. Phys. Lett. 60, 1004 (1992).CrossRefGoogle Scholar
40.Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991).CrossRefGoogle Scholar
41.Peter, L. A., Blackwood, D. J., and Pons, S., Phys. Rev. Lett. 62, 308 (1989).Google Scholar
42.Canham, L. T., Houlton, M. R., Leong, W. Y., Pickering, C., and Keen, J. M., J. Appl. Phys. 70, 422 (1991).CrossRefGoogle Scholar
43.Tischler, M. A., Collins, R. T., Stathis, J. H., and Tsang, J. C., Appl. Phys. Lett. 60, 639 (1992).CrossRefGoogle Scholar
44.Prokes, S. M., Carlos, W. E., and Glembocki, O. J., Phys. Rev. B 50, 17093 (1994).CrossRefGoogle Scholar
45.Canham, L. T., Houlton, M. R., Leong, W. Y., Pickering, C., and Keen, J. M., J. Appl. Phys. 70, 422 (1991).CrossRefGoogle Scholar
46.Shih, S., Tsai, C., Li, K-H., Jung, K. H., Campbell, J. C., and Kwong, D. L., Appl. Phys. Lett. 60, 633 (1992).CrossRefGoogle Scholar
47.Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B. K., Koch, F., and Lehmann, V., Appl. Phys. Lett. 61, 943 (1992).Google Scholar
48.Prokes, S. M. and Glembocki, O. J., Phys. Rev. B 49, 2238 (1994).Google Scholar
49.Li, K. H., Tsai, C., Sarathy, J., and Campbell, J. C., Appl. Phys. Lett. 62, 3192 (1993).CrossRefGoogle Scholar
50.Lauerhaas, J. M., Credo, G. M., Heinrich, J. L., and Sailor, M. J., in Light Emission from Silicon, edited by Iyer, S. S., Collins, R. T., and Canham, L. T. (Mater. Res. Soc. Symp. Proc. 256, Pittsburgh, PA 1992), p. 137;Google Scholar
Lauerhaas, J. M., Credo, G. M., Heinrich, J. L., and Sailor, M. J., J. Am. Chem. Soc. 114, 1911 (1992).CrossRefGoogle Scholar
51.Poulin, S., Diawara, Y., Currie, J. F., Yelon, A., Gujrathi, S. C., and Petrova, V.-Koch, in Microcrystalline Semiconductors: Materials Science and Devices, edited by Fauchet, P. M., Tsai, C. C., Canham, L. T., Shimizu, I., and Aoyagi, Y. (Mater. Res. Soc. Symp. Proc. 283, Pittsburgh, PA, 1993), p. 83.Google Scholar
52.Stevens, P. D. and Glosser, R., Appl. Phys. Lett. 63, 803 (1993).Google Scholar
53.Carlos, W. E. and Prokes, S. M., Appl. Phys. Lett. (1994).Google Scholar
54.Aoyagi, H., Motohashi, A., Kinoshita, A., Aono, T., and Satou, A., Jpn. J. Appl. Phys. 32, L1 (1993).Google Scholar
55.L'Ecuyer, J. D. and Farr, J. P. G., in Microcrystalline Semiconductors: Materials Science and Devices, edited by Fauchet, P. M., Tsai, C. C., Canham, L. T., Shimizu, I., Aoyagi, Y. (Mater. Res. Soc. Symp. Proc. 283, Pittsburgh, PA, 1993), p. 3.Google Scholar
56.Tischler, M. A., Collins, R. T., Stathis, J.H., and Tsang, J.C., Appl. Phys. Lett. 60, 639 (1992).Google Scholar
57.Dubin, V. M., Chazalviel, J.N., and Ozanam, F., J. Lumin. 57, 61 (1993).Google Scholar
58.van Buuren, T., Tiedje, T., Dahn, J.R., and Way, B. M., Appl. Phys. Lett. 63, 2911 (1993).Google Scholar
59.Banerjee, S., Narasimhan, K. L., and Sardesai, A., Phys. Rev. B 49, 2915 (1994).Google Scholar
60.Hummel, R. E., Ludwig, M., Chang, S.S., and LaTorre, G., Thin Solid Films 255, 219 (1995).CrossRefGoogle Scholar
61.Prokes, S. M. and Glembocki, O. J., Phys. Rev. B 51, 11183 (1995).CrossRefGoogle Scholar
62.Hollinger, G. and Himsel, F. J., Phys. Rev. B 28, 3651 (1993).CrossRefGoogle Scholar
63.Wolford, D. J., Scott, B. A., Reimer, J.A., and Bradley, J.A., Physica B 117 & 118, 920 (1983).CrossRefGoogle Scholar
64.Griscom, D. L., J. Ceram. Soc. Jpn. 99, 923 (1991).CrossRefGoogle Scholar
65.Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J., and Cardona, M., Solid State Commun. 81, 302, (1992).Google Scholar
66.Prokes, S. M., Glembocki, O. J., Bermudez, V. M., Kaplan, R., Friedersdorf, L. E., and Searson, P. C., Phys. Rev. B 45, 13788 (1992).CrossRefGoogle Scholar
67.Koch, F., Petrova-Koch, V., Muschik, T., Nikolov, A., and Gavrilenko, V., in Microcrystalline Semiconductors: Materials Science and Devices, edited by Fauchet, P. M., Tsai, C. C., Canham, L. T., Shimizu, I., and Aoyagi, Y. (Mater. Res. Soc. Symp. Proc. 283, Pittsburgh, PA, 1993), p. 197.Google Scholar
68.Prokes, S. M., Appl. Phys. Lett. 62, 3244 (1993).Google Scholar
69.Bsiesy, A., Vial, J. C., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestein, R., Wasiela, A., Halimaoui, A., and Bomchil, G., Surf. Sci. 254, 195 (1991).Google Scholar
70.Calcott, P. D. J., Nash, K. J., Canham, L. T., Kane, M. J., and Brumhead, D., J. Phys.: Condens. Matter 5, L91 (1993).Google Scholar
71.Hou, X. Y., Shi, G., Wang, W., Zhang, F.L., Hao, P. H., Huang, D. M., and Wang, X., Appl. Phys. Lett. 62, 1097 (1993)Google Scholar
72.Kovalev, D. I., Yaroshetzkii, I. D., Muschik, T., Petrova-Koch, V., and Koch, F., Appl. Phys. Lett. 64, 214 (1994).CrossRefGoogle Scholar
73.Kanemitsu, Y., Futagi, T., Matsumoto, T., and Mimura, H., Phys. Rev. B 49, 14732 (1994).Google Scholar
74.Kontkiewitcz, A. J., Kontkiewitcz, A. M., Siejka, J., Sen, S., Nowak, G., Hoff, A. M., Sakthivel, P., Ahmed, K., Mukherjee, P., Witanachchi, S., and Lagowski, J., Appl. Phys. Lett. 65, 1436 (1994).CrossRefGoogle Scholar
75.Tamura, H., Ruckschloss, M., Wirschem, T., and Veprek, S., Appl. Phys. Lett. 65, 1537 (1994).CrossRefGoogle Scholar
76.Tsybeskov, L., Vandyshev, Ju. V., and Fauchet, P. M., Phys. Rev. B 49, 7821 (1994).Google Scholar
77.Meyer, B. K., Hoffmann, D. M., Stadler, W., Petrova-Koch, V., Koch, F., Emanuelsson, P., and Omling, P., Lumin, J.. 57, 137 (1993).Google Scholar
78.Merzbacher, E., Quantum Mechanics (John Wiley and Sons, New York, 1970), p. 105.Google Scholar
79.Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
80.Delley, B. and Steigmeier, E. F., Phys. Rev. B 47, 1397 (1993).CrossRefGoogle Scholar
81.Hybertsen, M. S., Phys. Rev. Lett. 72, 1514 (1994).Google Scholar
82.Sui, S., Leong, P. P., Herman, I. P., Higashi, G. S., and Temkin, H., Appl. Phys. Lett. 60, 2086 (1992).CrossRefGoogle Scholar
83.Shih, S., Tsai, C., Li, K. H., Jung, K. H., Campbell, J. C., and Kwong, D. L., Appl. Phys. Lett. 60, 633 (1992).Google Scholar
84.Deak, P., Rosenbauer, M., Stutzmann, M., Weber, J., and Brandt, M. S., Phys. Rev. Lett. 69, 2531 (1992).Google Scholar
85.Van de Walle, C. G. and Northrup, J. E., Phys. Rev. Lett. 70, 1116 (1993).Google Scholar
86.Pitt, C. G., Bursey, M. M., and Rogerson, P. F., J. Am. Chem. Soc. 92, 519 (1970).Google Scholar
87.Suemoto, T., Tanaka, K., and Nakajima, A., Phys. Rev. B 49, 11005 (1994).CrossRefGoogle Scholar
88.Gardelis, S., Rimmer, J. S., Dawson, P., Hamilton, B., Kubiak, R. A., Whall, T. E., and Parker, E. H. C., Appl. Phys. Lett. 59, 2118 (1991).Google Scholar
89.Hybertsen, M. S., in Light Emission from Silicon, edited by Iyer, S. S., Collins, R. T., and Canham, L. T. (Mater. Res. Soc. Symp. Proc. 256, Pittsburgh, PA, 1992), p. 179.Google Scholar
90.Tischler, M. A., Collins, R. T., Stathis, J. H., and Tsang, J. C., Appl. Phys. Lett. 60, 639 (1992).CrossRefGoogle Scholar
91.Prokes, S. M., Freitas, J. A. Jr., and Searson, P. C., Appl. Phys. Lett. 60, 3295 (1992).CrossRefGoogle Scholar
92.Xie, Y. H., Wilson, W. L., Ross, F. M., Mucha, J. A., Fitzgerald, E. A., Macaulay, J. M., and Harris, T. D., J. Appl. Phys. 71, 2403 (1992).CrossRefGoogle Scholar
93.Street, R. A., Adv. Phys. 25, 397 (1976), and references therein.Google Scholar
94.Finkbeiner, S., Weber, J., Rosenbauer, M., and Stutzmann, M., J. Lumin. 57, 231 (1993).Google Scholar
95.Munekuni, S., Yamanaka, T., Shimogaichi, Y., Tohmon, R., Ohki, Y., Nagasawa, K., and Hama, Y., J. Appl. Phys. 68, 1212 (1990).Google Scholar
96.Stutzmann, M., Brandt, M. S., Rosenbauer, M., Fuchs, H. D., Finkbeiner, S., Weber, J., and Deak, P., J. Lumin. 57, 321 (1993).CrossRefGoogle Scholar
97.Calcott, P. D. J., Nash, K. J., Canham, L. T., Kane, M. J., and Brumhead, D., J. Lumin, 57, 257 (1993).Google Scholar
98.Pankove, J. I., Optical Processes in Semiconductors (Dover, New York, 1968), p. 107.Google Scholar
99.Schuppler, S., Friedman, S. L., Marcus, M. A., Adler, D. L., Xie, Y. H., Ross, F. M., Harris, T. D., Brown, W. L., Chabal, Y. L., Brus, L. E., and Citrin, P. H., Phys. Rev. Lett. 72, 2648 (1994).Google Scholar
100.Siegele, R., Haugen, H. K., Lockwood, D. J., Bryskiewicz, B., Forster, J. S., and Andrews, H. R., Solid State Commun. 93, 833 (1995).Google Scholar
101.Ito, T., Yasumatsu, T., Watabi, H., and Hiraki, A., Jpn. J. Appl. Phys. 29, L201 (1990).CrossRefGoogle Scholar
102.Tsai, C., Li, K. H., Kinosky, D. S., Qian, R. Z., Hsu, T. C., Irby, J. T., Banerjee, S. K., Tasch, A. F., Campbell, J. C., Hance, B. K., and White, J. M., Appl. Phys. Lett. 60, 1700 (1992).Google Scholar
103.Koyama, H., Araki, M., Yammamoto, Y., and Koshida, N., Jpn. J. Appl. Phys. 30, 2606 (1991).Google Scholar
104.Lockwood, D. J., Aers, G. C., Allard, L. B., Bryskiewitcz, B., Charbonneau, S., Houghton, D. C., McCaffrey, J. P., and Wang, A., Can. J. Phys. 70, 1184 (1992).CrossRefGoogle Scholar
105.Sagnes, I., Halimaoui, A., Vincent, G., and Badoz, P. A., Appl. Phys. Lett. 62, 1155 (1993).CrossRefGoogle Scholar
106.Kanemitsu, Y., Uto, H., Matsumoto, Y., Futagi, T., and Mimura, H., Phys. Rev. B 48, (1993).Google Scholar
107.Prokes, S. M., J. Appl. Phys. 73, 407 (1993).Google Scholar
108.Ruckschloss, M., Ambacher, O., and Veprek, S., Lumin, J.. 57, 1 (1993).Google Scholar
109.Prokes, S. M. and Glembocki, O. J., Proc. SPIE 2141, 146 (1994).Google Scholar
110.Tsybeskov, L. and Fauchet, P. M., Appl. Phys. Lett. 64, 1 (1994).Google Scholar
111.Cullis, A. G., Canham, L. T., Williams, G. M., Smith, P. W., and Dosser, O. D., in Microcrystalline Semiconductors: Materials Science and Devices, edited by Fauchet, P. M., Tsai, C. C., Chanham, L. T., Shimizu, I., and Aoyagi, Y. (Mater. Res. Soc. Symp. Proc. 283, Pittsburgh, PA, 1993), p. 257.Google Scholar
112.Tamura, H., Ruckschloss, M., Wirschem, T., and Veprek, S., Thin Solid Films 225, 92 (1995).CrossRefGoogle Scholar
113.Collins, R. T., Tsichler, M. A., and Stathis, J. H., Appl. Phys. Lett. 61, 1649 (1992).CrossRefGoogle Scholar
114.Fischer, P. B., Dai, K., Chen, E., and Chou, S., J. Vac. Sci. Technol. B 11, 2524 (1993).Google Scholar
115.Zhou, W., Shen, H., Harvey, J.F., Lux, R.A., Dutta, M., Lu, F., Perry, C. H., Tsu, R., Kalkhoran, N. M., and Namavar, F., Appl. Phys. Lett. 61, 1435 (1992).Google Scholar
116.Sood, A. K., Jayaram, K., and Voctor, D., Muthu, S., J. Appl. Phys. 72, 4963 (1992).CrossRefGoogle Scholar
117.Ryan, J.M., Wamsely, P. R., and Bray, K. L., Appl. Phys. Lett. 63, 2260 (1993).CrossRefGoogle Scholar
118.Zeman, J., Zigone, M., Martinez, G., Rikken, G. L. J. A., Bordet, P., and Chenavas, J., Thin Solid Films 255, 35 (1995).Google Scholar
119.Tsai, C., Li, K. H., Sarathy, J., Shih, S., Campbell, J. C., Hance, B. K, and White, J. M., Appl. Phys. Lett. 59, 2814 (1991).CrossRefGoogle Scholar
120.Venkateswara Rao, A., Ozanam, F., and Chazalviel, J.N., J. Electrochem. Soc. 138, 153 (1991).Google Scholar
121.Gupta, P., Colvin, V.L., and George, S.M., Phys. Rev. B 37, 8234 (1988).CrossRefGoogle Scholar
122.Koch, F., Petrova-Koch, V., and Muschik, T., J. Lumin. 57, 271 (1993).CrossRefGoogle Scholar
123.Ching, W. Y., Lam, D. J., and Lin, C.C., Phys. Rev. B 21, 2378. (1980).CrossRefGoogle Scholar
124.Papaconstantopoulos, D. A. and Economu, E.N., Phys. Rev. B 24, 7233 (1981).Google Scholar
125.Yamasaki, S., Hata, N., Yoshida, T., Oheda, H., Matsuda, A., Okushi, H., and Tanaka, K., Phys, J.. Colloq. 42, C4-297 (1981).Google Scholar
126.von Roedern, B., Ley, L., and Cardona, M.Phys. Rev. Lett. 39, 1576 (1977).Google Scholar
127.Csepregi, L., Kennedy, E.F., Gallegher, T. J., Mayer, J.W., and Sigmon, T. W., J. Appl. Phys. 48, 4234.CrossRefGoogle Scholar
128.Fischer, R., in Topics in Applied Physics: Amorphous Semiconductors, edited by Brodsky, M. H. (Springer-Verlag, New York, 1979), p. 159.Google Scholar
129.Hirabayashi, I. and Morigaki, K., J. Non-Cryst. Solids 59/60, 645 (1983).CrossRefGoogle Scholar
130.Stutzman, M., Weber, J., Brandt, M. S., Fuchs, H. D., Rosenbauer, M., Deak, P., Hopner, A., and Brietschwerdt, A., Adv. Solid State Phys. 42 (1992).Google Scholar
131.Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., and Muller, F., Appl. Phys. Lett. 59, 304 (1991).CrossRefGoogle Scholar
132.Rosenbauer, M., Stutzmann, M., Fuchs, H. D., Finkbeiner, S., and Weber, J., J. Lumin, 57, 153 (1993).CrossRefGoogle Scholar
133.Skuja, L. N. and Silin, A. R., Phys. Status Solidi A 56, K11 (1979).CrossRefGoogle Scholar
134.Nagasawa, K., Ohki, Y., and Hama, Y., Jpn. J. Appl. Phys. 26, L1009. (1987).Google Scholar
135.Nagasawa, K., Hoski, Y., Ohki, Y., and Yahagi, K., Jpn. J. Appl. Phys. 25, 464 (1986).Google Scholar
136.Kanemitsu, Y., Matsumoto, T., Futagi, T., and Mimura, H., Jpn. J. Appl. Phys. 32, 411 (1993).Google Scholar
137.Motohiro, T., Kachi, T., Miura, F., Takeda, Y., Hyodo, S., and Noda, S., Jpn. J. Appl. Phys. 31, L207 (1992).Google Scholar
138.Freibele, E. J., Griscom, D. L., and Marrone, M. J., Non-Cryst, J.. Solids 71, 133 (1985).Google Scholar
139.Skuja, L., Solid State Commun. 84, 613 (1992).Google Scholar
140.Carlos, W. E. and Prokes, S. M., J. Appl. Phys. 78, 2129 (1995).Google Scholar
141.Prokes, S. M. and Carlos, W. E., J. Appl. Phys. 78, 2671 (1995).Google Scholar
142.Muller, S. H., Sprenger, M., Sieverts, E. G., and Ammerlaan, C. A. J., Solid State Commun. 25, 987 (1978).CrossRefGoogle Scholar
143.Stesmans, A., Phys. Rev. B 45, 9501 (1992).Google Scholar
144.Stesmans, A. and Scheerlinck, F., Phys. Rev. B 50, 5204 (1994).CrossRefGoogle Scholar
145.Dinh, L. N., Chase, L. L., Balooch, M., Terminello, L. T., and Wooten, F., Appl. Phys. Lett. 65, 3111 (1994).CrossRefGoogle Scholar
146.Lang, W., Steiner, P., Kozlowski, F., and Sandmeier, H., J. Lumin. 57, 169 (1993).CrossRefGoogle Scholar