Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T01:25:40.301Z Has data issue: false hasContentIssue false

Surface and interface properties of ferroelectric BaTiO3 thin films on Si using RuO2 as an electrode

Published online by Cambridge University Press:  03 March 2011

Q.X. Jia
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
L.H. Chang
Affiliation:
Department of Electrical and Computer Engineering, State University of New York at Buffalo, Buffalo, New York 14260
W.A. Anderson
Affiliation:
Department of Electrical and Computer Engineering, State University of New York at Buffalo, Buffalo, New York 14260
Get access

Abstract

Ferroelectric BaTiO3 thin films were deposited on Si by rf magnetron sputtering. A conductive oxide, RuO2, was used as the bottom electrode of the capacitors. The performance of the thin film capacitors was found to be a strong function of the surface and interface properties between ferroelectric BaTiO3 and the bottom electrode. A suitable capacitor configuration must be used to preserve the bottom electrode, to enhance the dielectric constant, and to reduce the leakage current density of the films. BaTiO3 thin film on the RuO2/Si substrate, where the BaTiO3 thin film has a bilayer structure of polycrystalline on microcrystalline, showed a dielectric constant of 125 at a frequency of 1 MHz, leakage current density of 10−6 A/cm2 at a field intensity of 2.5 × 105 V/cm, and a breakdown voltage above 106 V/cm.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sakuma, T., Yamamichi, S., Matsubara, S., Yamaguchi, H., and Miyasaka, Y., Appl. Phys. Lett. 57, 2431 (1990).CrossRefGoogle Scholar
2Abe, K., Tomita, H., Toyoda, H., Imai, M., and Yokote, Y.Jpn J Appl. Phys. 30, 2152 (1991).CrossRefGoogle Scholar
3Madsen, L. D. and Weaver, L., J. Electron. Mater. 21, 93 (1992).CrossRefGoogle Scholar
4Bernstein, S. D., Wong, T. Y., Kisler, Y., and Tustison, R. W., J. Mater. Res. 8, 12 (1993).CrossRefGoogle Scholar
5Ramesh, R., Inam, A., Chan, W. K., Tillerot, F., Wilkens, B., Chang, C. C., Sands, T., Tarascon, J. M., and Keramides, V. G., Appl. Phys. Lett. 59, 3542 (1991).CrossRefGoogle Scholar
6Ramesh, R., Inam, A., Chan, W. K., Wilkens, B., Myers, K., Remschnig, K., Hart, D. L., and Tarascon, J. M., Science 252, 944 (1991).CrossRefGoogle Scholar
7Eom, C. B., van Dover, R. B., Phillips, J. M., Werder, D. J., Marshall, J. H., Chen, C. H., Cava, R. J., Fleming, R. M., and Fork, D. K., Appl. Phys. Lett. 63, 2570 (1993).CrossRefGoogle Scholar
8Pratt, I. H., Proc. IEEE 59, 1440 (1971).CrossRefGoogle Scholar
9Numata, K., Aoki, K., Fukuda, Y., and Nishimura, A., in Interface Control of Electrical, Chemical, and Mechanical Properties, edited by Murarka, S. P., Ohmi, T., Rose, K., and Seidel, T. (Mater. Res. Soc. Symp. Proc. 318, Pittsburgh, PA, 1994), p. 659.Google Scholar
10Jia, Q. X., Shi, Z. Q., and Anderson, W. A., presented at the 34th Electronic Materials Conf. (EMC), Cambridge, MA, June 24–26, 1992.Google Scholar
11Yoo, I. K. and Desu, S. B., Phys. Status Solidi A 133, 565 (1992).CrossRefGoogle Scholar
12Jia, Q. X., Shi, Z. Q., Yi, J., and Anderson, W. A., J. Electron. Mater. 23, 53 (1994).Google Scholar
13Vadimsky, R. G., Frankenthal, R. P., and Thompson, D. E., J. Electrochem. Soc. 126, 2107 (1979).CrossRefGoogle Scholar
14Jia, Q. X., Jiao, K. L., Anderson, W. A., and Collins, F. M., Mater. Sci. Eng. B 18, 220 (1993).CrossRefGoogle Scholar
15Jia, Q. X., Shi, Z. Q., and Anderson, W. A., Thin Solid Films 209, 230 (1992).CrossRefGoogle Scholar
16Li, P. and Lu, T. M., Appl. Phys. Lett. 59, 1064 (1991).CrossRefGoogle Scholar
17Jia, Q. X., Chang, L. H., Ho, K. K., and Anderson, W. A., Ferroelectronics (1994, in press).Google Scholar